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SUMMARY

We analyze different velocity recovery mechanisms of full
waveform inversion (FWI) and compare misfit functions based
on the least-squares (L2) norm and optimal transport. The fo-
cus will be on recovering velocity even below reflecting in-
terfaces. The inherent nonconvexity of the L2 norm as misfit
leads to many local minima by updating the high-wavenumber
components first, which is good for migration but problem-
atic for inversion. On the other hand, the “transport” property
behind the optimal transport based misfit functions naturally
generates low-wavenumber updates which are ideal for recov-
ering the model kinematics. We will analyze the velocity re-
covery mechanisms of diving waves and for domains above
reflecting layers to see the advantages of using optimal trans-
port type of misfit. Multiple numerical examples with simple
layered models as well as a realistic benchmark with salt inclu-
sion demonstrate that optimal-transport FWI is able to update
the low-wavenumber components.

INTRODUCTION

Full waveform inversion (FWI) is a computational technique
for obtaining high-resolution subsurface properties by mini-
mizing the misfit between observed and synthetic seismic wave-
forms (Tarantola and Valette, 1982). Unlike the least-squares
reverse time migration (LSRTM), FWI also updates the back-
ground velocity model, and thus the problem turns into a non-
linear waveform inversion. The mathematical formulation of
FWI is a partial differential equation (PDE) constrained opti-
mization. In FWI, the misfit function, i.e., the objective func-
tion in the optimization process, is defined as a functional on
the data domain. In both time (Tarantola, 1987) and frequency
domain (Pratt, 1990; Pratt and Worthington, 1990), the least-
squares (L2) norm has been the most widely used misfit func-
tion.

FWI is typically performed using local optimization methods
in which the subsurface model is described by using a large
number of unknowns, and the number of model parameters is
specified a priori (Tarantola, 2005). It is well known that the
accuracy of FWI deteriorates from the lack of low frequencies,
data noise, and poor starting model. In a sequence of papers,
the Wasserstein metrics have been introduced as an alternative
to L2 norm to avoid trapping in FWI optimization due to the
cycle skipping problem and to reduce the effect of noise (En-
gquist and Froese, 2014; Engquist et al., 2016; Métivier et al.,
2016; Métivier et al., 2016; Yang and Engquist, 2017, 2018;
Yang et al., 2017; Chen et al., 2017). As a useful tool from the
theory of optimal transport, the Wasserstein metric computes
the minimal cost of rearranging one distribution into another.
Methods based on the optimal transport compare the observed
and simulated data globally and thus include important phase
information.

In our previous studies of the quadratic Wasserstein metric
(W2), we mainly focused on FWI with diving waves or data
from shallow reflectors to refine the velocity models. Due
to limitations of the acquisition geometry, there might be no
diving waves traveling through the depth of interests or be-
ing recorded by the receivers. Traditional FWI has difficulty
in properly updating deeper features due to the lack of diving
waves. Several methods have been proposed recently to bet-
ter utilize the reflection data in FWI (Ramos-Martinez et al.,
2016; Sun et al., 2016; Gomes and Chazalnoel, 2017). In these
methods, the high-wavenumber and low-wavenumber compo-
nents in the gradient of reflection data are separated to update
the model kinematics first.

The goal of this paper is to study another important feature of
optimal-transport FWI for reflection data. We demonstrate this
feature using numerical examples of both simple layered mod-
els and a more realistic salt model. Naturally, the inversion
improves when diving waves and reflections from shallower
interfaces are available. We will see that partial inversion for
velocity below the reflectors is still possible by using W2 norm
even when the initial model does not have any waves returning
from below the reflector. Finally, based on the observed be-
havior we conclude that the better convexity of W2 metric can
tackle many different types of local minima that conventional
L2 norm suffers: the cycle-skipping issue and updating only
the high-wavenumber components.

THEORY

In this section, we briefly review the mathematical formulas of
the adjoint-state method, conventional FWI with L2 norm and
FWI using trace-by-trace W2 norm.

Without loss of generality, we use a simple acoustic setting in
this abstract:

m(x) ∂ 2u(x,t)
∂ t2 −4u(x, t) = s(x, t)

u(x,0) = 0
∂u
∂ t (x,0) = 0

(1)

We assume the model m(x) = 1
c(x)2 where c(x) is the veloc-

ity, u(x, t) is the wavefield, s(x, t) is the source. It is a linear
PDE but a nonlinear operator from model domain m(x) to data
domain u(x, t).

Adjoint-State Method

The advances in numerical methods and computational power
allow for solving the wave equations and computing the Fréchet
derivative with respect to model parameters, which are needed
in the optimization. In the adjoint-state method (Plessix, 2006),
one only needs to solve two wave equations numerically, the
forward propagation and the backward adjoint wavefield prop-
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Optimal transport for FWI with reflections
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Figure 1: Four-layer model: vertical velocity profiles of (a) the
true and (b) the initial model.

agation:
∂J
∂m

=−
∫ T

0

∂ 2u(x, t)
∂ t2 w(x, t)dt, (2)

where u is the solution to the forward modelling (1) and w is
the solution to the following adjoint wave equation:

m ∂ 2w(x,t)
∂ t2 −4w(x, t) = RT ∂J

∂ f
w(x,T ) = 0
wt(x,T ) = 0

(3)

FWI with L2 Norm

In time domain conventional FWI defines a least-squares wave-
form misfit as

J1(m) =
1
2

R∑
r=1

∫
| f (xr, t;m)−g(xr, t)|2 dt, (4)

where R is the total number of time history traces, xr are re-
ceiver locations, g is observed data, and f is simulated data
which is part of the source wavefield with model parameter m.
The time integral is carried out numerically as a sum. This
formulation can also be extended to the case with multiple
sources.

FWI with W2 Metric

Here we review the trace-by-trace technique of using W2 norm
as the misfit function in FWI (Yang et al., 2017):

J2(m) =

R∑
r=1

W 2
2 ( f (xr, t;m),g(xr, t)), (5)

Mathematically it is W2 metric in the time domain and L2 norm
in the spatial domain.

The functions f and g represent synthetic data and observed
data in a corresponding trace. With proper normalization, sig-
nals f and g can be rescaled to be positive, supported on [0,1],
and have total integral 1. We can exactly solve the 1D op-
timal transportation problem (Villani, 2003) in terms of the
cumulative distribution functions F(x) =

∫ x
−∞

f (t)dt G(x) =
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Figure 2: Four-layer model: vertical velocity profiles of (a) L2

inversion and (b) W2 inversion after 1, 20 and 30 iterations.

∫ x
−∞

g(t)dt and their inverses F−1 and G−1. The formula for
1D quadratic Wasserstein metric (W2) between f and g is

W 2
2 ( f ,g) =

∫ 1

0
|F−1−G−1|2dy (6)

The corresponding Fréchet derivative which is also the adjoint
source term in the backward propagation is:

∂W 2
2 ( f ,g)
∂ f

=

(∫ T0

t
−2(s−G−1(F(s))

dG−1(y)
dy

∣∣∣∣
y=F(s)

f (s)ds

)
dt

+ |t−G−1(F(t))|2dt.
(7)

This adjoint source term in the discrete 1D setting can be com-
puted as[

U diag
(
−2 f (t)dt
g(ϕ(t))

)]
(t−ϕ(t))dt + |t−ϕ(t)|2dt, (8)

where ϕ = G−1 ◦F and U is the upper triangular matrix whose
non-zero components are 1.

REFLECTIVITY AND SUBLAYER INVERSION

In this section, we will discuss several layered models, whose
velocities only vary vertically. The source in all the tests is a
Ricker wavelet centered at 15 Hz. There are in total 52 sources
and 301 receivers on top in the first (water) layer. Gradients of
the water layer are muted in all the tests.

Four-Layer Reflection Model

The Wasserstein metric as the misfit functional in FWI was in-
troduced (Engquist and Froese, 2014) with the motivation to
tackle the cycle-skipping issues caused by phase mismatches.
However, we will see that W2 norm is more powerful than
phase based inversion since it can invert with reflection only
data. One such case is velocity estimation between reflecting
discontinuities.

Let us consider a four-layer model (Figure 1a) whose two deep-
est layers are unknown to the initial model (Figure 1b). The
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Figure 3: Four-layer model: inversion result of (a) L2 and
(b) W2 for the four-layer model (Figure 1) after 30 iterations.
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Figure 4: Diving wave guided inversion: vertical velocity pro-
files of (a) the true model and (b) the initial model.

total recording time is 4.0 seconds. The observed data only
contains a direct wave and multiple reflections from the model
discontinuities. The initial data lacks the last reflections from
the two deepest interfaces.

In this test, the reflections in the observed data of the unknown
layers lead to immediate local velocity corrections by both L2

and W2 based FWI, see the first iterations in Figure 2a and
Figure 2b. After 30 iterations, L2-FWI starts to create wrong
features as seen in Figure 3a, but W2-FWI completely recovers
the first unknown layer and continues to reconstruct the second
one (Figure 3b).

Two facts may contribute to the fast recovery. Not only the
velocity in the layer of 3.5 km/s is implicitly embedded in the
amplitude of both the last two reflections and the head waves,
but also its velocity is interpreted by W2 norm from the travel
time difference between the reflections. In another word, the
final reflection generated by the velocity discontinuity jumping
from 3.5 km/s to 4 km/s helps W2 norm to recover the layer of
3.5 km/s significantly.

Diving Wave Guided Inversion

The true model here consists of two layers (1.5 km/s and 2km/s),
followed by the linear velocity increasing from 2 km/s to 4
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Figure 5: Diving wave guided inversion: 1D velocity profiles
of (a) L2-FWI and (b) W2-FWI after 30, 80 and 150 iterations.
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Figure 6: Diving wave guided inversion: FWI using (a) L2

norm and (b) trace-by-trace W2 norm after 200 iterations.

km/s (Figure 4a), while the starting model is a homogeneous
velocity 1.5 km/s (Figure 4b). The total recording time is 6.0
seconds. With a gradual velocity increase at the deeper part of
the true model, the diving waves are recorded in the observed
data besides the reflections.

In the previous four-layer model, two layers are unknown to
the initial model, and FWI using W2 norm quickly recovers the
first unknown layer because of the travel time difference be-
tween the last two reflections. We can see that in this test travel
time between the reflection and the diving wave also help W2-
FWI quickly recover the unknown constant velocity layer in 30
iterations (Figure 5b), and the linearly increasing part is mostly
recovered in 200 iterations (Figure 6b). Again, the L2-FWI is
trapped in local minima generated from both the reflections
and the diving waves by only updating the high-wavenumber
components.

SALT MODEL INVERSION

It is important to investigate the phenomena discussed above in
the more realistic settings of well-known velocity models with
strongly reflecting salt inclusions. The inversion results from
these sharp discontinuities in velocity are quite similar to those
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(b) Initial velocity model

Figure 7: Modified 2004 BP model: (a) the true velocity;
(b) the initial velocity.

L2 result after 100 iterations
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(a) L2-FWI after 100 iterations

W2 result after 100 iterations
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(b) W2-FWI after 100 iterations

Figure 8: Modified 2004 BP model: (a) FWI with L2 norm and
(b) FWI with trace-by-trace W2 norm after 100 iterations.

of the simple cases. With many reflections and diving waves
contributing to the inversion in the more realistic models, it is,
of course, harder to determine the most relevant mechanisms.

Here we consider a salt model, which is part of the 2004 BP
benchmark (3.3 km in depth and 9.35 km in width). Figure 7a
and Figure 7b show the true and initial velocities. We place
11 sources of 15 Hz Ricker wavelet and 375 receivers equally
on the top. The total recording time is 4 seconds. The ob-
served data is dominated by the refection from the top of the
salt inclusion.

After 100 iterations, we can see that FWI using both norms can
detect the salt upper boundary (Figure 8a and Figure 8b). With
more iterations, the W2 based technique gradually recovers the
salt body (Figure 9b), which is much less the case for L2 norm

L2 final inversion result
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(a) L2-FWI final result

W2 final inversion result

0 2 4 6 8
0

1

2

3

z
 (

k
m

)

2

3

4

V
e
lo

c
it
y
 (

k
m

/s
)

(b) W2-FWI final result

Figure 9: Modified 2004 BP model: (a) FWI with L2 norm and
(b) FWI with trace-by-trace W2 norm final results.

as shown in Figure 9a. This also means that features below the
salt inclusion can significantly be better determined by using
optimal transport related metrics as the mismatch functional,
see Figure 4 in (Yang and Engquist, 2017).

CONCLUSION

FWI using least-squares norm is often unable to recover low-
wavenumber components of the model because it updates the
same type of high-wavenumber components as in data when
the initial model is far away from the true model, which may
converge to a wrong result. The difficulty in inversion with
reflection data is another type of local minima originating from
the inherent nonconvexity of the L2 norm.

One way to tackle this challenge is to consider another misfit
function with better convexity. The Wasserstein metric from
the optimal transport theory is one such candidate. Optimal
transport compares signals globally and naturally considers
misfits in both amplitude differences and phase mismatches.
Our numerical examples show that the inversion with W2 norm
efficiently avoids the high-wavenumber components update which
does not decrease the data misfit in W2 norm. The better inver-
sion results of W2 norm demonstrate its capacity to provide
better convexity in inversion for many different types of seis-
mic data, including both diving waves and reflections.
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