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SUMMARY

We summarize and compare four different misfit functions for
full waveform inversion (FWI): the conventional least-squares
norm, the integral wavefields misfit functional, the Normal-
ized Integration Method (NIM) and the quadratic Wasserstein
metric. The integral wavefields misfit functional and NIM are
equivalent to the norm for Soblev space, which has intrinsic
connections with the quadratic Wasserstein metric. We extract
two important features of optimal transport. The first one is
integration of data, which reduces high frequencies and glob-
ally compares observed and synthetic seismic waveforms. The
other is rescaling of the data to be nonnegative. Numerical
results illustrate that FWI with quadratic Wasserstein metric
can effectively overcome the cycle skipping problem. A math-
ematical study on the convexity of the four misfit functions
demonstrates the importance of data nonnegativity and inte-
gration in dealing with local minima in inversion.

INTRODUCTION

Full waveform inversion (FWI) is a data-driven method to ob-
tain high resolution subsurface properties by minimizing the
difference between observed and synthetic seismic waveforms
(Virieux et al., 2017). In the past three decades, the least-
squares norm (L2) has been widely used as a misfit function
(Tarantola and Valette, 1982; Lailly, 1983), which is known
to suffer from cycle skipping issues with local minimum trap-
ping and sensitivity to noise (Virieux and Operto, 2009). Other
misfit functions proposed in literature, include the L1 norm
(Brossier et al., 2010), the Huber norm (Ha et al., 2009), fil-
ter based misifit functions (Warner and Guasch, 2014; Zhu and
Fomel, 2016), seismic envelop inversion (Luo and Wu, 2015)
and some others.

A recently introduced class of misfit functions are optimal-
transport related (Engquist and Froese, 2014; Métivier et al.,
2016; Engquist et al., 2016; Métivier et al., 2016; Yang et al.,
2016). As useful tools from the theory of optimal transport, the
quadratic Wasserstein metric (W2) computes the optimal cost
of rearranging one distribution into another with a quadratic
cost function, while 1-Wasserstein metric (W1) using absolute
value cost function.

In this paper, we will also discuss about Normalized Intergra-
tion Method (NIM) which computes the least-squares differ-
ence between two normalized data sets (Liu et al., 2012; Chau-
ris et al., 2012; Donno et al., 2013). If we consider the data are
properly rescaled, the misfit of NIM is the norm of Sobolev
space H−1 in mathematics. The connection between W2 and
H−1 is not obvious from the optimal transport definition, but
is clear from the 1D closed solution formula. We shall also
see that this is valid in higher dimensions even if there is no
explicit solution formula.

The goal of this paper is to analyze important features of opti-
mal transport and to compare with methods introduced earlier.
We focus on two features in particular. One is integration of
data and the other is the need to rescale the data to be non-
negative. Integration provides a global comparison between
observed and synthetic data and also shifts the focus to lower
frequencies. Nonnegativity further reduces the risk of cycle
skipping.

THEORY

Full waveform inversion is a PDE-constrained optimization
problem, minimizing the data misfit d( f ,g) by updating the
model m, i.e. :

m� = argmin
m

d( f (xr, t;m),g(xr, t)), (1)

where g is observed data, f is simulated data, xr are receiver
locations, and m is the model parameter. We get the modeled
data f (x, t;m) by solving a wave equation with a finite differ-
ence method (FDM) in both the space and time domain (Alford
et al., 1974).

Generalized least squares functional is a weighted sum of the
squared errors and hence a generalized version of the standard
least squares misfit function. The formulation is

J1(m) =
�

r

�
|W ( f (xr, t;m))−W (g(xr, t))|2 dt, (2)

where W is an operator. In the conventioinal L2 misfit, W = I,
the identity operator.

The integral wavefields misfit functional (Huang et al., 2014) is
a generalized least squares functional applied on full-waveform
inversion (FWI) with weighting operator W (u) =

� t
0 u(x,τ)dτ .

The objective function is defined as

J2(m) =
�

r

� ����
� t

0
f (xr,τ;m)dτ −

� t

0
g(xr,τ)dτ

����
2

dt, (3)

If we define the integral wavefields U(x, t) =
� t

0 u(x,τ)dτ, then
misfit function (3) is the ordinary least squares misfit between
the observed and predicted integral wavefields

� t
0 g(xr,τ)dτ

and
� t

0 f (xr,τ;m)dτ . The integral wavefields still satisfy the
original acoustic wave equation with a different source term:
δ (�x−�xs)

� t
0 s(τ)dτ = δ (�x−�xs)H(t)∗s(t), where s is the origi-

nal source term and H(t) is the Heaviside step function (Huang
et al., 2014).

Normalized Integration Method (NIM) is another generalized
least squares functional, similar to the integral wavefields mis-
fit functional. However, compared with integral wavefields
misfit functional which directly integrates the observed and
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(c) Comparison among NIM, W2, W1 in 1D

Figure 1: The shaded areas represent the mismatch each mis-
fit function considers. (a) L2:

�
( f − g)2dt. (b) Integral

wavefields method:
�
(
�

f −
�

g)2dt. After data normaliza-
tion, (c) NIM measures

�
(F − G)2dt, while W2 considers�

(F−1 −G−1)2dt and W1 considers
�
|F−1 −G−1|dt.

synthetic data in time, NIM first preconditions the data and
then takes the integration. The objective function is:

J3(m) =
1
2

�

r

�
|Q( f (xr, t;m))−Q(g(xr, t))|p dt, (4)

where Q is transformation of the wavefield u, defined as:

Q(u)(xr, t) =

� t
0 P(u)(xr,τ)dτ

� T
0 P(u)(xr,τ)dτ

. (5)

The operator P is included to make the data nonnegative. Three
common choices are P1(u) = |u|, P2(u) = u2 and P3 = E(u),
which correspond to the absolute value, the square and the en-
velop of the signal (Liu et al., 2012).

Despite the fact that both methods are measuring the L2 misfit,
there are three different features in NIM compared with con-
ventional FWI. Data sets are normalized to be nonnegative,
mass balanced and integrated in time. The first two are exactly
the prerequisite of optimal transport based misfit functions, i.e.
the Wasserstein metrics.

Optimal transport
Optimal transport refers to the problem of seeking the mini-
mum cost required to transport mass of one distribution into
another given a cost function, e.g. |x− y|p. The mathematical
definition of the distance between the distributions f : X →R+

and g : Y → R+ can then be formulated as

W p
p ( f ,g) = inf

Tf ,g∈M

�

X

��x−Tf ,g(x)
��p f (x)dx (6)

where M is the set of all maps Tf ,g that rearrange the distribu-
tion f into g (Villani, 2003).

The optimal transport formulation requires non-negative dis-
tributions and equal total masses,

�
f (x)dx =

�
g(x)dx, which

are not natural for seismic signals. Therefore a proper data
normalization is required before inversion. Datasets f and g
can be rescaled to be nonnegative with values in range [0,1],
and to have equal mass. This step is exactly the same as the
one in Equation (5) in NIM.

We can compare the data trace by trace and use the Wasserstein
metric (Wp) in 1D to measure the misfit. The overall misfit is
then

J4(m) =

R�

r=1

W p
p ( f (xr, t;m),g(xr, t)), (7)

where R is the total number of traces. In this paper, we mainly
discuss the quadratic Wasserstein metric (W2) when p= 2 in (6)
and (7).

PROPERTIES

Next we discuss the similarities and difference among the mis-
fit functions mentioned above. We will regard f and g as the
synthetic and observed data from one single trace as an 1D
problem.

Relations among misfit functions
Conventional full-waveform inversion measures the L2 norm
difference

�
| f (t)− g(t)|2dt, indicated by the shaded part in

Figure 1a. The integral wavefields misfit functional first inte-
grates f and g in time, and then measures their L2 misfit (3).
The integral wavefields can be viewed as wavefields produced
by a low-passed seismic wavelet. The created lower frequency
components (in Figure 1b) can properly explain the improve-
ment in inversion (Huang et al., 2014).

With a proper normalization method, it is possible to scale the
data to have nonnegativity and mass balance. This step is es-
sential for both NIM and W2. Since processing data trace-by-
trace is an 1D problem, we are able to solve the optimal trans-
port problem exactly (Villani, 2003). The optimal map is the
unique monotone rearrangement of the density f into g. In or-
der to compute the quadratic Wasserstein metric, we need the
cumulative distribution functions F and G and their inverses
F−1 and G−1. The explicit formulation for the 1D Wasser-
stein metric is:

W p
p ( f ,g) =

� 1

0
|F−1(x)−G−1(x)|pdx. (8)

The interesting fact is that W2 computes the L2 misfit between
F−1 and G−1 (Figure 1c), while the objective function of NIM
measures the L2 misfit between F and G, i.e.

� T
0 |F(t)−G(t)|2dt

(Figure 1c). This is identical to the mathematical norm of
Sobolev space H−1, || f − g||2H−1 , given f and g are nonneg-
ative and sharing equal mass.

Since F and G are both monotone increasing, one can show
that there is an equivalency between NIM and W2 misfit with
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Figure 2: The misfit between f (x) and f (x− s) by six differ-
ent misfit functions. First row shows conventional L2 (left),
intergral wavefield method (middle) and NIM with p(x) = x2

(right). Second row shows the W2 misfit with different nor-
malization methods: p(x) = x2 (left), ax + b (middle) and
exp(c∗ x) (right).

the same data normalization. Another demonstration of the
similarity between NIM and optimal transport based metrics
comes when p = 1 in (4) and (8). These two misfits are the
same since

�
|F(t)−G(t)|dt =

� 1
0 |F−1(x)−G−1(x)|dx.

Mathematical connection between H−1 norm and W2 norm

Next we move into a general case that f and g are synthetic
and observed data in higher dimensions, satisfying nonneg-
ativity and conservation of mass. To compute the quadratic
Wasserstein metric, we solve the following Monge-Ampère
equation (Brenier, 1991)

det(D2u(x)) = f (x)/g(∇u(x)) (9)

If f and g are close enough and g = (1+ εh+O(ε2)) f , where
h has mean zero, we can linearize (9) and also derive an ap-
proximation of the quadratic Wasserstein metric between f and
g (Villani, 2003, p126-p127):

W 2
2 ( f ,g)≈

�

Rn
|∇φ(x)|2 f (x)dx = || f −g||2H−1(dµ), (10)

where dµ = f (x)dx. In one word, the quadratic Wasserstein
metric is a weighted H−1 norm.

Besides, the dynamical characterization of the Wasserstein met-
ric proposed by Benamou-Brenier (Benamou and Brenier, 2000)
gives insights to consider that H−1 and W2 belongs to the same
class of measures. One can refer to Dolbeault et al. (2009) and
Cardaliaguet et al. (2012) for more theoretical details, and Pa-
padakis et al. (2014) for computational schemes. Mathemati-
cally, the misfits computed by NIM and W2 are close also in
higher dimensions.

Convexity

In order to illustrate the convexity of different objective func-
tions, we borrow an example from Engquist and Froese (2014)
that compares the misfit between a Ricker wavelet f and its
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Figure 3: (a) Convexity plot of conventional L2 (b) Convexity
plot of trace-by-trace W2 with normalization p2(x) = ax+b

shift f (x − s). One can refer to the blue and red curves in
Figure 1a. Here we plot the data misfits as a function of s in
Figure 2. Conventional L2, Intergral L2 and NIM are compared
on the first row. The second row displays W2 misfits with three
different scaling functions.

The figure on the top left for the conventional L2 is the mo-
tivation of (Engquist and Froese, 2014) to bring the quadratic
Wasserstein metric into seismic inversion. Such many local
minima in the figure are not in favor of gradient-based opti-
mization. The graph on the top middle is result of integral
wavefields misfit functional. It creates lower frequency com-
ponent, which decrease the chance of cycle skipping. Although
having less local minima than conventional L2, this method is
still ill-posed in inversion. Integrating the wavefields or inte-
grating the source may help invert the low wavenumber com-
ponent of velocity, but still suffers from cycle skipping issues.

As demonstrated by Engquist et al. (2016), the squared Wasser-
stein metric has several properties that make it attractive as
a choice of misfit function. One highly desirable feature is
its convexity with respect to several parameterizations. How-
ever, the convexity highly depends on the data normalization
method to satisfy nonnegativity and mass balance. The curves
in the second row of Figure 2 are W 2

2 distance with differ-
ent scaling functions: p1(x) = x2, and p2(x) = ax + b and
p3(x) = exp(c · x). Theoretically p1 gives perfect convexity,
but having difficulty in inversion with adjoint-state method.
From Taylor expansion p3 is very close to p2 when c is small,
but easy to blow up with large c. Our current choice is to nor-
malize data with p2, but it is worth thinking a new normaliza-
tion function that is able to preserve the convexity better.

It is interesting to compare the graph for NIM (upper right)
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Figure 4: (a) True model velocity (b) Initial velocity (c) Inver-
sion result using L2 (d) Inversion result using W2

with the one of W2 (lower left) both of which are using the
same normalization function (p1) and globally convex with re-
spect to the shift s. When f (x) and f (x− s) are close (i.e. |s|
is small), W2 is a weighted H−1 as (10) states. Both curves
have good convexity as O(s2) around zero. As |s| gets larger,
W 2

2 ( f , fs) is still O(s2), while the misfit measured by NIM is
O(s). The convexity of NIM becomes a bit weaker.

Finally we present a convexity result in model domain. We
borrow the example from Métivier et al. (2016). The veloc-
ity model is assumed to vary linearly in depth as v(x,z) =
vp,0 +αz, where v0 is the starting velocity on the surface, α
is vertical gradient and z is depth. The reference for (vp,0,α)
is (2km/s, 0.7s−1), and we plot the misfit curves with α ∈
[0.4,1] and v0 ∈ [1.75, 2.25] on 41×45 grid in Figure 3. We
observe many local minima and maxima in Figure 3a. Al-

though W2 is not convex in data domain with normalization
method p2(x) = ax+b (Figure 2), the curve for W2 (Figure 3b)
is globally convex in model parameters vp,0 and α . It demon-
strates the capacity of W2 in mitigating cycle skipping issues.

NUMERICAL EXAMPLE

In this section, we use a part of the BP 2004 benchmark ve-
locity model (Billette and Brandsberg-Dahl, 2005) (Figure 4a)
and an initial model without the upper salt part (Figure 4b)
to do inversion with W2 and L2 norm respectively. A fixed-
spread surface acquisition is used, involving 11 shots located
every 1.6km on top. A Ricker wavelet centered on 5Hz is used
to generate the synthetic data with a bandpass filter only keep-
ing 3 to 9Hz components. We stopped the inversion after 300
L-BFGS iterations.

Here we precondition the data with function p2(x) = ax+ b
to satisfy the nonnegativity and mass balance in optimal trans-
port. Inversion with trace-by-trace W2 norm successfully con-
struct the shape of the salt bodies (Figure 4d), while FWI with
the conventional L2 failed to recover boundaries of the salt
bodies as shown by Figure 4c.

CONCLUSION

In this paper, we summarize and compare four misfit func-
tions: the conventional least-squares inversion (L2), the in-
tegral wavefields misfit function, the Normalized Integration
Method (NIM), and the quadratic Wasserstein metric (W2) from
optimal transport. The L2 norm is popular in general inverse
problems, but suffers from cycle skipping in seismic inversion.
The other three methods all incorporate the idea of integra-
tion the waveforms. Integration helps in enhancing the lower
frequency component, but cannot avoid local minima coming
from the oscillatory periodicity of the data. It is ideal to have
a preconditioning operator which can “break” the periodicity
and “record” the previous data information in time.

One solution is to combine the nonnegativity and integration in
time together. Both NIM and the quadratic Wasserstein met-
ric include these ideas as essential steps. A detailed discussion
illustrates that the quadratic Wasserstein metric and the H−1

norm which NIM computes belong to the same family of math-
ematical measures. Moreover, H−1 and W2 become equivalent
when the two data sets are close. The analysis among these
misfit functions of FWI brings additional insights into the im-
portance of seismic data preconditioning, which also can be
seen in examples of large scale FWI.
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