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Abstract. We analyze different misfit functions for comparing synthetic
and observed data in seismic imaging, for example, the Wasserstein met-
ric and the conventional least-squares norm. We revisit the convexity and
insensitivity to noise of the Wasserstein metric which demonstrate the
robustness of the metric in seismic inversion. Numerical results illustrate
that full waveform inversion with quadratic Wasserstein metric can often
effectively overcome the risk of local minimum trapping in the optimiza-
tion part of the algorithm. A mathematical study on Fréchet derivative
with respect to the model parameters of the objective functions further
illustrates the role of optimal transport maps in this iterative approach.
In this context we refer to the objective function as misfit. A realistic
numerical example is presented.
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1 Introduction

Seismic data contains interpretable information about subsurface properties.
Imaging predicts the spatial locations as well as properties that are useful in
exploration seismology. The inverse method in the imaging predicts more phys-
ical properties if a full wave equation is employed instead of an asymptotic
far-field approximation to it [9].

This, so called full waveform inversion (FWI) is a data-driven method to
obtain high resolution subsurface properties by minimizing the difference or
misfit between observed and synthetic seismic waveforms [12]. In the past
three decades, the least-squares norm (L2) has been widely used as a misfit
function [10], which is known to suffer from cycle skipping issues (local mini-
mum trapping) and sensitivity to noise [12].

Optimal transport has become a well developed topic in mathematics since it
was first proposed by Gaspard Monge in 1781. The idea of using optimal trans-
port for seismic inversion was first proposed in 2014 [3]. A useful tool from the
theory of optimal transport, the Wasserstein metric computes the optimal cost
of rearranging one distribution into another given a cost function. In computer
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science the metric is often called the “Earth Mover’s Distance” (EMD). Here we
will focus on the quadratic Wasserstein metric (W2).

In this paper, we briefly review the theory of optimal transport and revisit the
convexity and noise insensitivity of W2 that were proved in [4]. The properties
come from the analysis of the objective function. Next, we compare the Fréchet
derivative with respect to the model parameters in different misfit functions
using the adjoint-state method [8]. Discussions and comparisons between large
scale inversion results using W2 and L2 metrics illustrate that the W2 metric is
very promising for overcoming the cycle skipping issue in seismic inversion.

2 Theory

2.1 Full Waveform Inversion and the Least Squares Functional

Full waveform inversion is a PDE-constrained optimization problem, minimizing
the data misfit J(f, g) by updating the model m, i.e.:

m� = argmin
m

J(f(xr, t;m), g(xr, t)), (1)

where g is observed data, f is simulated data, xr are receiver locations. We get
the modeled data f(x, t;m) by numerically solving in both the space and time
domain [1].

Generalized least squares functional is a weighted sum of the squared errors
and hence a generalized version of the standard least-squares misfit function.
The formulation is

J1(m) =
∑

r

∫
|W (f(xr, t;m)) − W (g(xr, t))|2 dt. (2)

In the conventional L2 misfit, the weighting operator W is the identity I.
The integral wavefields misfit functional [5] is a generalized least squares

functional applied on full-waveform inversion (FWI) with weighting operator
W (u) =

∫ t

0
u(x, τ)dτ . If we define the integral wavefields U(x, t) =

∫ t

0
u(x, τ)dτ,

then misfit function becomes the ordinary least squares difference between∫ t

0
g(xr, τ)dτ and

∫ t

0
f(xr, τ ;m)dτ . The integral wavefields still satisfy the orig-

inal acoustic wave equation with a different source term: δ(x − xs)H(t) ∗ S(t),
where S is the original source term and H(t) is the Heaviside step function [5].
We will refer this misfit function as H−1 norm in this paper.

Normalized Integration Method (NIM) is another generalized least squares
functional, with an additional normalization step than integral wavefields misfit
functional [6]. The weighting operator is

W (u)(xr, t) =

∫ t

0
P (u)(xr, τ)dτ

∫ T

0
P (u)(xr, τ)dτ

, (3)

where function P is included to make the data nonnegative. Three common
choices are P1(u) = |u|, P2(u) = u2 and P3 = E(u), which correspond to the
absolute value, the square and the envelop of the signal [6].
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2.2 Optimal Transport

Optimal transport is a problem that seeks the minimum cost required to trans-
port mass of one distribution into another given a cost function, e.g. |x − y|2. The
mathematical definition of the distance between the distributions f : X → R

+

and g : Y → R
+ can then be formulated as

W 2
2 (f, g) = inf

Tf,g∈M

∫

X

|x − Tf,g(x)|2 f(x) dx (4)

where M is the set of all maps Tf,g that rearrange the distribution f into g [11].
The Wasserstein metric is an alternative misfit function for FWI to measure

the difference between synthetic data f and observed data g. We can compare
the data trace by trace and use the Wasserstein metric (Wp) in 1D to measure
the misfit. The overall misfit is then

J2(m) =
R∑

r=1

W p
p (f(xr, t;m), g(xr, t)), (5)

where R is the total number of traces. In this paper, we mainly discuss about
quadratic Wasserstein metric (W2) when p = 2 in (4) and (5).

Here we consider f0(t) and g0(t) as synthetic data and observed data from
one single trace. After proper scaling with operator P , we get preconditioned
data f = P (f0) and g = P (g0) which are positive and having total sum one. If
we consider they are probability density functions (pdf), then after integrating
once, we get the cumulative distribution function (cdf) F (t) and G(t).

If f is continuous we can write the explicit formulation for the 1D Wasserstein
metric as:

W 2
2 (f, g) =

∫ 1

0

|F−1(t) − G−1(t)|2dt =
∫ T

0

(G−1F (t) − t)2f(t)dt. (6)

The interesting fact is that W2 computes the L2 misfit between F−1 and G−1

(Fig. 1), while the objective function of NIM measures the L2 misfit between F
and G (Fig. 1). This is identical to the mathematical norm of Sobolev space H−1,
||f − g||2H−1 , given f and g are nonnegative and sharing equal mass.

Fig. 1. After data normalization NIM measures
∫

(F − G)2dt, while W2 considers∫
(F−1 −G−1)2dt and W1 considers

∫ |F−1 −G−1|dt.
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3 Properties

Figure 2a shows two signals f and its shift g, both of which contain two ricker
wavelets. Shift of signals are common in seismic data when we have incorrect
velocity. We compute the L2 norm and W2 norm between f and g, and plot the
misfit curves in terms of s in Fig. 2b and c. The L2 difference between two signals
has many local minima and maxima as s changes. It is a clear demonstration
of the cycle skipping issue of L2 norm. The global convexity of Fig. 2c is a
motivation to further study the ideal properties of W2 norm.

Fig. 2. (a) A signal consisting two Ricker wavelets (blue) and its shift (red). (b) L2

norm between f and g which is a shift of f . (c) W2 norm between P2(f) and P2(g) in
terms of different shift s. (Color figure online)

As demonstrated in [4], the squared Wasserstein metric has several properties
that make it attractive as a choice of misfit function. One highly desirable feature
is its convexity with respect to several parameterizations that occur naturally
in seismic waveform inversion [13]. For example, variations in the wave velocity
lead to simulations f(m) that are derived from shifts,

f(x; s) = g(x + sη), η ∈ R
n, (7)

or dilations,
f(x;A) = g(Ax), AT = A, A > 0, (8)
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applied to the observation g. Variations in the strength of a reflecting surface or
the focusing of seismic waves can also lead to local rescalings of the form

f(x;β) =

{
βg(x), x ∈ E

g(x), x ∈ R
n\E.

(9)

In Theorem 1, f and g are assumed to be nonnegative with identical integrals.

Theorem 1 (Convexity of squared Wasserstein metric [4]). The squared
Wasserstein metric W 2

2 (f(m), g) is convex with respect to the model parameters
m corresponding to a shift s in (7), the eigenvalues of a dilation matrix A in (8),
or the local rescaling parameter β in (9).

The Fig. 2c numerically exemplifies Theorem 1. Even if the scaling P (u) = u2

perfectly fits the theorem it has turned out not to work well in generating an
adjoint source that works well in inversion. The linear scaling, P (u) = au+b, on
the other hand works very well even if the related misfit lacks strict convexity
with respect to shifts. The two-variable example described below and Fig. 3 are
based on the linear scaling. It gives the convexity with respect to other variables
in velocity than a simple shift in the data.

The example from [7] shows a convexity result in higher dimensional model
domain. The model velocity is increasing linearly in depth as v(x, z) = vp,0+αz,
where vp,0 is the starting velocity on the surface, α is vertical gradient and z
is depth. The reference for (vp,0, α) is (2 km/s, 0.7 s−1), and we plot the misfit
curves with α ∈ [0.4, 1] and v0 ∈ [1.75, 2.25] on 41×45 grid in Fig. 3. We observe
many local minima and maxima in Fig. 3a. The curve for W2 (Fig. 3b) is globally
convex in model parameters vp,0 and α. It demonstrates the capacity of W2 in
mitigating cycle skipping issues.

Fig. 3. (a) Conventional L2 misfit function (b) W2 misfit function trace-by-trace

Another ideal property of optimal transport is the insensitivity to noise. All
seismic data contains either natural or experimental noise. For example, the
ocean waves lead to extremely low frequency data in marine acquisition. Wind
and cable motions also generate random noise.
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The L2 norm is known to be sensitive to noise since the misfit between
clean and noisy data is calculated as the sum of squared noise amplitude at each
sampling point. In [4] W2 norm is proved to be insensitive to mean-zero noise and
the property apply for any dimension of the data. This is a natural result from
optimal transport theory since the W2 metric defines a global comparison that
not only considers the change in signal intensity but also the phase difference.

Theorem 2 (Insensitivity to noise [4]). Let fns be f with a piecewise con-
stant additive noise of mean zero uniform distribution. The squared Wasserstein
metric W 2

2 (f, fns) is of O( 1
N ) where N is the number of pieces of the additive

noise in fns.

4 Discussions

Typically we solve the linearized problem iteratively to approximate the solu-
tion in FWI. This approach requires the Fréchet derivatives of the misfit function
J(m) which is expensive to compute directly. The adjoint-state method [8] pro-
vides an efficient way of computing the gradient. This approach requires the
Fréchet derivative ∂J

∂f and two modelings by solving the wave equations. Here
we will only discuss about the acoustics wave Eq. (10).

m
∂2u(x, t)

∂t2
− Δu(x, t) = S(x, t) (10)

In the adjoint-state method, we first forward propagate the source wavelet
with zero initial conditions. The simulated data f is the source wavefield u
recorded on the boundary. Next we back propagate the Fréchet derivative ∂J

∂f as
the source with zero final conditions and get the receiver wavefield v.

With both the forward wavefield u and backward wavefield v, the Fréchet
derivative of m becomes

∂J

∂m
= −

∫ T

0

utt(x, t)v(x, T − t) = −
∫ T

0

u(x, t)vtt(x, T − t) (11)

In the acoustic setting, the vtt(x, t) is equivalent to the wavefield with the
second order time derivative of ∂J

∂f being the source. The change of the misfit
function only impacts the source term of the back propagation, particularly the
second order time derivative of ∂J

∂f . For L2 norm, the term is 2(ftt(x, t)−gtt(x, t)),
and for H−1 norm it becomes 2(g(x, t)−f(x, t)). For trace-by-trace W2 norm, the
second order time derivative of ∂W 2

2 (f,g)
∂f is 2

(
g(x,t′)−f(x,t)

g(x,t′)

)
where t′ = G−1F (t),

the optimal coupling of t for each trace.
Compared with L2 norm, the source term of H−1 does not has the two time

derivatives and therefore has more of a focus on the lower frequency part of the
data. Lower frequency components normally provide a wider basin of attraction
in optimization. The source term of W2 is similar to the one of H−1 norm, but
the order of signal g in time has changed with the optimal map for each trace
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at receiver x. The optimal couplings often change the location of the wavefront.
For example, if g is a shift of f , then the wavefront of g will be mapped to the
wavefront of f even if two wavefronts do not match in time. The change of time
order in g also helps generate a better image under the reflectors when we back
propagate the source and compute the gradient as in (11).

5 Numerical Example

In this section, we use a part of the BP 2004 benchmark velocity model [2]
(Fig. 4a) and a highly smoothed initial model without the upper salt part
(Fig. 4b) to do inversion with W2 and L2 norm respectively. A fixed-spread sur-
face acquisition is used, involving 11 shots located every 1.6 Km on top. A Ricker
wavelet centered on 5 Hz is used to generate the synthetic data with a bandpass
filter only keeping 3 to 9 Hz components. We stopped the inversion after 300
L-BFGS iterations.

Fig. 4. Large scale FWI example

Here we precondition the data with function P (f) = a · f + b to satisfy the
nonnegativity and mass balance in optimal transport. Inversion with trace-by-
trace W2 norm successfully construct the shape of the salt bodies (Fig. 4d), while
FWI with the conventional L2 failed to recover boundaries of the salt bodies as
shown by Fig. 4c.
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6 Conclusion

In this paper, we revisited the quadratic Wasserstein metric from the optimal
transport theory in the application of seismic inversion. The desirable properties
of convexity and insensitivity to noise make it a promising alternative misfit func-
tion in FWI. We also analyze the conventional least-squares inversion (L2 norm),
the integral wavefields misfit function (H−1 norm) and the quadratic Wasserstein
metric (W2) in terms of the model parameter gradient using the adjoint-state
method. The analysis further demonstrate the effectiveness of optimal transport
ideas in dealing with cycle skipping.
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