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ABSTRACT

State-of-the-art seismic imaging techniques treat inversion
tasks such as full-waveform inversion (FWI) and least-squares
reverse time migration (LSRTM) as partial differential equation-
constrained optimization problems. Due to the large-scale
nature, gradient-based optimization algorithms are preferred
in practice to update the model iteratively. Higher-order meth-
ods converge in fewer iterations but often require higher
computational costs, more line-search steps, and bigger
memory storage. A balance among these aspects has to be
considered. We have conducted an evaluation using Anderson
acceleration (AA), a popular strategy to speed up the conver-
gence of fixed-point iterations, to accelerate the steepest-descent
algorithm, which we innovatively treat as a fixed-point iteration.

Independent of the unknown parameter dimensionality,
the computational cost of implementing the method can
be reduced to an extremely low dimensional least-squares
problem. The cost can be further reduced by a low-rank
update. We determine the theoretical connections and
the differences between AA and other well-known optimization
methods such as L-BFGS and the restarted generalized minimal
residual method and compare their computational cost
and memory requirements. Numerical examples of FWI
and LSRTM applied to the Marmousi benchmark demonstrate
the acceleration effects of AA. Compared with the steepest-
descent method, AA can achieve faster convergence and
can provide competitive results with some quasi-Newton
methods, making it an attractive optimization strategy for seis-
mic inversion.

INTRODUCTION

The fast growth of computational power popularizes numerous
techniques that use full wavefields in seismic imaging (Tarantola
and Valette, 1982). In particular, full-waveform inversion (FWI) (Vir-
ieux and Operto, 2009) and least-squares reverse time migration
(LSRTM) (Dai and Schuster, 2013) aim to reconstruct subsurface
properties such as the wave velocity and the material density by min-
imizing an objective function that measures the discrepancy between
synthetic data and observed data. Iterative optimization algorithms
are then applied to find the optimal solution (Métivier et al., 2017).
For local optimization, the descent direction depends on the gra-

dient and the Hessian information of the objective function with
respect to the model parameters. Theoretically, the step size along
the descent direction should be determined by a line search to guar-
antee a sufficient decrease in the objective function and avoid over-
shooting. However, the process of a backtracking line search could
incur a considerable amount of extra wave modeling. Sometimes, to

reduce the computational cost of a line-search method and avoid
overshooting, a tiny fixed step size is preferred instead, but this
slows down the convergence. Similarly, Newton’s method is not
widely used in practical seismic inversion due to the cost of calcu-
lating and storing the Hessian matrix, despite being known to offer a
quadratic convergence rate. For large-scale optimization problems
such as seismic inversion, a better rate of convergence often comes
at the cost of memory and computing power. In practice, it is often
best to balance computing and memory considerations.
In the past two decades, Anderson acceleration (AA) has been

widely used in several applied fields for problems that can be solved
by a fixed-point iteration. The application of AA includes flow prob-
lems (Pollock et al., 2018), solving nonlinear radiation-diffusion equa-
tions (An et al., 2017), and wave propagation (Yang et al., 2020). It is
closely related to Pulay mixing and direct inversion on the iterative
subspace (DIIS) (Pulay, 1980; Kudin et al., 2002), which are promi-
nent methods in self-consistent field theory (Ceniceros and Fredrick-
son, 2004). AA is also becoming popular in the numerical analysis
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community (Walker andNi, 2011; Toth andKelley, 2015; Zhang et al.,
2018; Pollock and Rebholz, 2019; Evans et al., 2020). The literature
on this subject is broad, so we only mention a few papers to show the
variety of results obtained by AA. In contrast to Picard iteration (Pic-
ard, 1893; Butenko and Pardalos, 2014), which uses only one pre-
vious iterate, the method proceeds by linearly recombining a list
of previous iterates to approximately minimize the linearized fixed-
point residual. AA can be applied directly to accelerate fixed-point
operators that arise naturally from solving partial differential equations
(PDEs). The method was mainly used in optimization-free scenarios
until the past few years. Recently, AA has been showing promising
results in accelerating optimization algorithms (Li and Li, 2018; Peng
et al., 2018; Fu et al., 2019; Mai and Johansson, 2019) and in machine
learning (Geist and Scherrer, 2018).
In this paper, we aim to combine the fast convergence of Newton-

type methods with the low cost of only evaluating the gradient. We do
this by applying an acceleration strategy introduced byAnderson (1965)
to the steepest-descent algorithm. We first reformulate the iterative for-
mula as a fixed-point operator. In contrast to the classic gradient descent,
AA produces a new iterate as a linear combination of several previous
iterates. The linear coefficients are selected optimally to achieve the best
reduction in the linearized fixed-point residual. As an acceleration strat-
egy for the steepest-descent method, AA can achieve competitive con-
vergence speed with respect to methods such as limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) and the nonlinear con-
jugate gradient descent (nCG) while reducing the computational cost of
computing the exact or approximating the (inverse) Hessian matrix. We
illustrate the performance of these methods as the optimization algo-
rithm for FWI and LSRTM in the numerical examples.

THEORY

In this section, we first introduce the algorithmic details of AA
for fixed-point problems and explain its similarities and differences

with Picard iteration. Later, we review some essential background
regarding FWI and LSRTM. Throughout the paper, we assume that
the forward model is an acoustic wave equation with a constant
density.

Anderson acceleration

AA is an acceleration strategy introduced to improve the slow
convergence of Picard iterations (Anderson, 1965). We present
the details of AA in Algorithm 1. The memory parameter M de-
termines the number of additional past iterates that need to be stored
to compute the next iterate. For example, whenM ¼ 0, AA reduces
to the Picard iteration because the ðkþ 1Þth iterate pkþ1 only de-
pends on pk and pkþ1 ¼ GðpkÞ, where G is the fixed-point oper-
ator. For a nonzeroM, pkþ1 is a linear combination of the previous
Mþ 1 iterates, together with their evaluation by the fixed-point
operator G; see equation 2 for a detailed updating formula. If
M ¼ þ∞ and the damping parameter βk in equation 2 is also chosen
optimally at every iteration, AA is essentially equivalent to the gen-
eralized minimal residual method (GMRES) whenG is a linear fixed-
point operator and the fixed-point solution solves the square linear
system Ax ¼ b (Toth and Kelley, 2015). The damping parameter
βk, which could vary at different iteration k, controls the balance
between the linear combination of the iterates fpk−MþigMi¼0 and
the linear combination of their evaluation by the operator
fGðpk−MþiÞgMi¼0.
At iteration k, the coefficient vector αðkÞ ¼ ðαðkÞ0 ; : : : ; αðkÞMk

ÞT is
determined by minimizing the sum of the weighted fixed-point resid-
uals. The sum of all of the coefficients must total one so that the fixed-
point solution p� is preserved under the updating equation 2 of AA.
The Picard iteration fits into the updating equation 2 with the weight-
ing vector ð0; 0; : : : ; 0; 1ÞT for every k. Because the weighting vector
for AA is obtained from the optimization problem (equation 1), AA is
always at least as good as Picard iteration as

����X
Mk

i¼0

αðkÞi fk−Mkþi

����
�
≤ kfkk�; (3)

where fi ¼ GðpiÞ − pi is the fixed-point residual
of the ith iteration.
Through a change of variable, one can remove

the constraints in equation 1 to simplify the
optimization step. Consider a new vector

γðkÞ ¼ ðγðkÞ0 ; : : : ; γðkÞMk−1ÞT defined by the optimal

parameter αðkÞ where

γðkÞi ¼ αðkÞ0 þ : : : þ αðkÞi ; 0 ≤ i ≤ Mk − 1:

(4)

Consider the matrix Ak given by

Ak ¼ ðfk−Mkþ1 − fk−Mk
; : : : ; fk − fk−1Þ;

(5)

whose column vectors are the differences in the
fixed-point residual between two consecutive
iterations. The optimization step (equation 1)
is equivalent to the following unconstrained op-
timization problem:

Algorithm 1. The AA strategy.

Input: Given the initial guess p0 and memory parameter M ≥ 1; G is the given fixed-
point operator. Set p1 ¼ Gðp0Þ.
for k = 0, 1, 2, : : : do

Step 1: Set Mk ¼ minðM; kÞ and matrix Fk ¼ ðfk−Mk
; : : : ; fkÞ, where

fi ¼ GðpiÞ − pi is the fixed-point residual of the ith iterate.

Step 2: Find the optimal weights αðkÞ ¼ ðαðkÞ0 ; : : : ; αðkÞMk
ÞT by the optimization

problem

minPMk
i¼0

αðkÞi ¼1

kFkα
ðkÞk�: (1)

Step 3: Update the next iterate pkþ1

pkþ1 ¼ ð1 − βkÞ
XMk

i¼0

αðkÞi pk−Mkþi þ βk
XMk

i¼0

αðkÞi Gðpk−MkþiÞ: (2)

end for
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γðkÞ ¼ argminγkAkγ − fkk�: (6)

There are several variants regarding the choice of the norm k · k�
in the optimization step. For example, one can use the l1, l2, or the
l∞ norm as the objective function. Alternatively, a weighted l2

norm may improve the conditioning of the fixed-point operator
or enforce the spectral bias toward certain modes of the solution
(Yang et al., 2020). The optimal weights may not be the same
among different choices of the objective function, and the cost
of solving the corresponding optimization problem also can be rad-
ically different. For example, linear programming is required to
solve the optimization under the l1 and the l∞ norms. However,
for the l2 norm, γðkÞ becomes the least-squares solution to the fol-
lowing linear system:

Akγ
ðkÞ ¼ fk; (7)

where fk ¼ GðpkÞ − pk is the fixed-point residual at iteration k. If
βk ¼ 1 for any k, then we can rewrite the updating formula in terms
of γðkÞ as follows:

pkþ1 ¼ GðpkÞ −
XMk−1

i¼0

γðkÞi ½Gðpk−Mkþiþ1Þ − Gðpk−MkþiÞ�:

(8)

It is computationally efficient to implement AA based on equation 8.
The size of Ak is n by Mk, where n is the dimension of the param-
eter and Mk ¼ minðM; kÞ ≤ M. The memory parameter M of
AA is often chosen to be small. A rank-updated QR factorization
can further reduce the cost of solving equation 7 (Golub and Van
Loan, 2013, section 12.5.1).

FWI and LSRTM

Seismic inversion aims to estimate the distribution of under-
ground material properties. They are large-scale inverse problems
that we treat as constrained optimization problems based on the
deterministic approach of solving inverse problems.
FWI is a nonlinear inverse technique that uses the entire wave-

field information to estimate the earth’s properties. Without loss of
generality, the PDE constraint of FWI is the following acoustic
wave equation with zero initial condition and nonreflecting boun-
dary conditions:

8<
:

mðxÞ ∂2uðx;tÞ
∂t2 − uðx; tÞ ¼ sðx; tÞ;

uðx; 0Þ ¼ 0;
∂u
∂t ðx; 0Þ ¼ 0:

(9)

We set the model parameter mðxÞ ¼ 1∕cðxÞ2, where cðxÞ is the
wave velocity, uðx; tÞ is the forward wavefield, and sðx; tÞ is the
wave source. The velocity parameter m is often the target of
reconstruction. Equation 9 is a linear PDE, but it defines a nonlinear
operator F that maps mðxÞ to uðx; tÞ. In FWI, we translate the in-
verse problem of finding the model parameter based on the observ-
able seismic data to a constrained optimization problem:

m� ¼ argminmJðmÞ; JðmÞ ¼ 1

2
kfðmÞ − gk22: (10)

The least-squares norm is commonly used as the objective function
J to calculate the misfit between the synthetic data fðmÞ ¼ RFðmÞ
and the observed data g. Here, R is the projection operator that ex-
tracts the wavefield u at the receiver locations. There are other
choices of objective functions to mitigate the cycle-skipping issues
of FWI (Yang et al., 2018).
LSRTM is a migration method designed to improve the image

quality generated by RTM. It is formulated as a linear inverse prob-
lem based on the Born approximation, a first-order linearization of
the map F (Hudson and Heritage, 1981). From now on, we denote
the forward operator of LSRTM, i.e., the Born modeling, as
L ¼ δF∕δm, the functional derivative of F with respect to m.
The linear operator L maps a small perturbation in the velocity mr

to the scattering wavefield ur:8<
:

m0
∂2urðx;tÞ

∂t2 − urðx; tÞ ¼ −mr
∂2u0ðx;tÞ

∂t2 ;
urðx; 0Þ ¼ 0;
∂ur
∂t ðx; 0Þ ¼ 0:

(11)

Here, m0 is the given background velocity and the background
wavefield u0 ¼ F ðm0Þ. We seek the reflectivity model by minimiz-
ing the least-squares error between the observed data dr and the
predicted scattering wavefield Lmr ¼ RLmr,

m�
r ¼ argminmr

JðmrÞ; JðmrÞ ¼
1

2
kLmr − drk22: (12)

To solve for m� in equation 10 and m�
r in equation 12, optimi-

zation algorithms heavily rely on the gradient and the Hessian in-
formation of the objective function J. In seismic inversions, one can
obtain the gradient of a parameter by solving the forward equation
and the adjoint equation once, based on the adjoint-state method
(Plessix, 2006). The adjoint equation for FWI and LSRTM is as
follows:

8<
:

m ∂2vðx;tÞ
∂t2 − vðx; tÞ ¼ −R� ∂J

∂f ;
vðx; TÞ ¼ 0;
∂v
∂t ðx; TÞ ¼ 0:

(13)

For LSRTM, the m in equation 13 is the background velocity m0.
The term ∂J∕∂f is the Fréchet derivative of the objective function
with respect to the synthetic data f, also known as the adjoint
source. If J is the least-squares norm, ∂J∕∂f ¼ f − g is the data
residual. The functional derivative of the objective function J with
respect to the model parameter m is

∂J
∂m

¼ −
Z

T

0

∂2uðx; tÞ
∂t2

vðx; tÞdt; (14)

where u and v are the forward and adjoint wavefields, respectively.
For FWI, u is the solution to the acoustic wave equation 9, whereas
for LSRTM, u is the solution to linearized wave equation 11. An
outstanding advantage of the adjoint-state method is that the num-
ber of wave simulations to compute the gradient is independent of
the size of m. The model parameter then can be updated by a gra-
dient-based optimization algorithm iteratively until meeting the
stopping criteria. The Hessian matrix also can be computed based
on the adjoint-state method if it is needed for optimization, uncer-
tainty quantification, or resolution analysis.
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METHOD

Within the framework of iterative methods, we treat the gradient-
descent algorithm as a fixed-point iteration, where the fixed-point
solution is the optimal model parameter. Consider an objective
function JðpÞ for the unknown parameter p. If we choose to min-
imize JðpÞ by the steepest-descent algorithm, then the ðkþ 1Þth
iterate pkþ1 is obtained by the kth iterate pk and the gradient vector
for pk. The step size is chosen to guarantee a sufficient decrease in
the objective function. Without loss of generality, we fix the step
size as a small positive constant η and obtain the updating formula
by the steepest descent:

pkþ1 ¼ pk − η
∂J
∂p

����
p¼pk

¼ GðpkÞ: (15)

Because the right side of equation 15 only depends on pk, one can
regard the updating formula as a fixed-point operator G applied to
pk. Equation 15 can be considered as the Picard iteration for G. The
fixed-point solution p� should satisfy

p� ¼ Gðp�Þ ⇔ ∂J
∂p

����
p¼p�

¼ 0: (16)

Thus, p is the fixed-point solution ofG if and only if the gradient of
the objective function J is zero at p.
Seismic inverse problems are often ill-posed and suffer from

cycle-skipping issues. Typically, the zero-gradient condition is far
from sufficient to guarantee the optimality, especially for FWI.
There has been extensive literature on tackling the nonconvexity
(Engquist and Yang, 2020; Symes, 2020). In this paper, we focus
on accelerating the convergence and not addressing the cycle-skip-
ping issues, which is another important research topic by itself.
Thus, we assume that the initial guess p0 in this paper is sufficient
so that the optimization problem does not suffer from local minima.

Given the fixed-point operator G defined by the steepest-descent
algorithm (equation 15), we aim to accelerate the convergence by
applying AA. First, we rewrite equation 5 as follows:

As ¼ fk ¼ GðpkÞ − pk ¼ −ηGk; (17)

Ak ¼ −ηðGk−Mkþ1 − Gk−Mk
; : : : ;Gk − Gk−1Þ; (18)

where Gk ¼ ∂J∕∂pjpk
is the gradient vector for the iterate pk. We

recall that the core of AA is to solve a linear system (equation 7) for
γðkÞ, which gives the optimal coefficients αðkÞ by a change of var-
iable. Applying AA to accelerate the gradient descent, we remark
that the main components of the linear system (equation 7) are con-
structed only by the gradients fGigki¼k−Mk

of the optimization.
Thus, the memory requirements of AA are the same as the L-BFGS
algorithm.
For typical fixed-point problems, the fixed-point residual is the in-

dicator of convergence. That is, we judge the convergence by com-
paring the norm of GðpÞ − p. As a unique feature of our application,
the fixed-point operator comes from an optimization problem. Thus,
the objective function also can be used in AA to improve the con-
vergence further. The traditional AA described in Algorithm 1 does
not have such a step related to the objective function. Therefore, by
combining the fixed-point residual and the objective function, we de-
scribe a new workflow of AA for seismic inversion in Algorithm 2.
The final pkþ1 is a linear combination of the output by the gradient
descent p̄kþ1 and the optimized new iterate by AA epkþ1. A back-
tracking line search following the Wolfe condition is applied to de-
termine the weighting between p̄kþ1 and epkþ1 such that we can
achieve the best decrease in the objective function J; see Algorithm 2
for more details.

NUMERICAL EXAMPLE

In this section, we present several inversion tests for FWI and
LSRTM and compare the performance of AA with other optimiza-

tion algorithms such as L-BFGS and the steepest-
descent method.

Full-waveform inversion

We aim to reconstruct the Marmousi velocity
model that is 3 km in depth and 9 km in width
(Figure 1a) from a smoothed initial guess as
shown in Figure 1b. There are 11 equally spaced
sources at 150 m below the air-water interface.
The source is a Ricker wavelet centered at 15 Hz,
and 4 s is the total recording time. There is no
cycle skipping with the chosen initial model.
The most time-consuming component of FWI
is seismic modeling, which is essential for gra-
dient calculation. Thus, instead of counting the
number of iterations, we use the number of gra-
dient evaluations to measure the performance.
Figure 2 shows the FWI results using AA

(M ¼ 20), L-BFGS (M ¼ 20), nCG, and the
steepest descent after 1000 gradient evaluations.
The same backtracking line search following
the Armijo rule and the curvature condition is

Algorithm 2. The l2-based AA for the gradient descent.

Input: Given the initial model p0, the memory parameter M ≥ 1, and the fixed-point
operator G based on the gradient-descent update (equation 15). Set p1 ¼ Gðp0Þ.
for k ¼ 1; 2; : : : until convergence or maximum iteration do

Step 1: Set p̄kþ1 ¼ GðpkÞ ¼ pk − ηGk. Update Ak and fk using the gradient vectors
fGigki¼k−Mk

where Mk ¼ minðM; kÞ.
Step 2: Find the least-squares solution γðkÞ to the linear system (equation 7) by using
the low-rank QR update.

Step 3: Compute the new iterate epkþ1 following equation 8.

Step 4: Apply the backtracking line search for λ such that Jðλepkþ1 þ ð1 − λÞp̄kþ1Þ
has a sufficient decrease compared to JðpkÞ.
Step 5: Set the new iterate as

pkþ1 ¼ λepkþ1 þ ð1 − λÞp̄kþ1: (19)

end for
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applied to all of the methods. The convergence history for the l2

objective function and the norm of the gradient is shown in Figure 3.
The results by AA and L-BFGS illustrate better resolution than that
by nCG. The steepest-descent method converges slowly. In both
plots, AA demonstrates a faster convergence rate than L-BFGS
and nCG. Known as quasi-Newton methods, L-BFGS and CG con-
verge in fewer iterations than AA. However, more gradient evalu-
ations are spent on the backtracking line search, which increases the
overall CPU time. The drastic improvement in the convergence rate
between AA and the steepest-descent method shows the benefits of
this simple strategy by linearly recombining previous iterates. Con-
sidering the low cost of implementation, AA can be an attractive
optimization technique for FWI. More analysis between AA and
L-BFGS is presented in the next section.

Inversion with noise

We present another FWI example that, unlike the previous set of
tests, introduces mean-zero noise to the observed data to make the
inversion test more representative of results expected on real data.
The noise follows a uniform distribution, and the signal-to-noise
ratio (S/N) is 0.55 dB. We plot one trace of the clean data and
the noisy data in Figure 4a for illustration. All of the other settings
remain the same as the noise-free example. Figure 4b is the inver-
sion result using AA to accelerate the steepest-descent algorithm,
whereas Figure 4d is the inversion result without acceleration.
We also perform a test for the L-BFGS algorithm (see Figure 4c).
All experiments are stopped after 1000 gradient calculations as pre-
viously. Compared with the noise-free results in the previous sec-
tion, one can observe artificial oscillatory features in all of the
images resulting from noise overfitting. However, the noise foot-
prints are equally strong for the inversion using L-BFGS and the
one using AA. Although the reconstruction by the steepest-descent
method seems to be less noisy, it also recovers fewer features of the
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Figure 1. (a) Marmousi true velocity and (b) Marmousi initial
velocity for FWI.
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Figure 2. (a) FWI using AA after 1000 gradient evaluations, (b) FWI
using L-BFGS after 1000 gradient evaluations, (c) FWI using non-
linear CG after 1000 gradient evaluations, and (d) FWI using the
steepest-descent method after 1000 gradient evaluations.
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Figure 3. (a) FWI convergence history of the objective function
and (b) FWI convergence history of the gradient norm, in terms
of computational time (measured by the number of FWI gradient
evaluations).
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true Marmousi model. This is due to its slower convergence com-
pared with AA and L-BFGS. Typically, one can expect that the ar-
tifacts in the reconstructed model will be proportional to the noise S/
N. To mitigate the noise effects, one can change the objective func-
tion from the l2 norm to the W2 metric (Yang et al., 2018), which
has proven to be more robust with respect to noise. One can also add
regularization terms to the objective function, which is a common
strategy to improve the stability of the inverse problem.

Least-squares reverse time migration

Our third example is to apply AA to LSRTM. We still use the
Marmousi benchmark (Figure 1a) for illustration. The smooth back-
ground velocity is shown in Figure 5a. We locate 80 equally spaced
wave sources (Ricker wavelet centered at 25 Hz) at 100 m below the
air-water interface. The entire workflow is similar to the FWI ex-
periment except for a different forward problem and a different tar-
get. The size of the velocity model is 151 × 461, and the spatial
spacing is 20 m. The total recording time is 4 s. Figure 5b and 5c
shows the true reflectivity model and one iteration of the RTM im-

age, respectively. RTM provides a crude subsurface image with
unbalanced illumination. After Laplacian filtering (Zhang and Sun,
2009), the migration artifacts are reduced, but the amplitude of the
image is still incorrect, as seen by comparing the color bar of Fig-
ure 5c and 5d with the truth (Figure 5b). LSRTM aims to refine the
image obtained by conventional RTM toward the true reflectivity.
Therefore, we use the image obtained by conventional RTM (Fig-
ure 5c) as the initial guess for inversion tests under the following
four optimization methods: restarted GMRES, AA, L-BFGS, and
steepest descent.
Because GMRES is good at finding the solution for square linear

systems, we reformulate the linear inverse problem that LSRTM
aims to solve,

Lmr ¼ dr: (20)

We multiply both sides of equation 20 by the Born operator L and
obtain

LTLmr ¼ LTdr: (21)

Note the right side of equation 21 is nothing new
but the migrated image after one step of RTM,
which we denote as mRTM. Because LTL is a
symmetric square matrix, we obtain a square lin-
ear system

ALmr ¼ mRTM; (22)

where AL ¼ LTL. Thus, we can use GMRES to
find the solution of equation 22, which is also the
solution of the original problem in equation 20.
We use a restarted GMRES with memory param-
eter M ¼ 3. Therefore, at most three previous
iterates are stored in memory when building
up the Krylov space at each iteration. We further
discuss the motivation and compare GMRES
with AA in the next section. The final solution
using the restarted GMRES is shown in Figure 6a
after 20 iterations.
The inverse problem or large-scale linear sys-

tem that GMRES solves is an optimization-free
formulation (see equation 22). Next, we return to
the optimization formulation of the linear inverse
problem (equation 12) and we use gradient-based
methods to find the optimal m�

r . Again, AA is
applied to the steepest-descent algorithm follow-
ing Algorithm 2. Figure 6 shows the inversion
results after 20 iterations. AA obtains an equally
good image with the one by L-BFGS (see Fig-
ure 6b and 6c). The memory parameter for both
methods isM ¼ 3. It indicates that at most three
iterates and their gradient vectors are stored in
memory to compute the next iteration. AA also
demonstrates noticeable improvement in LSRTM
compared to the steepest-descent method, as
shown in Figure 6d. All four methods improve the
unbalanced illumination in the original RTM im-
age (Figure 5c) and are closer to the true reflec-
tivity (Figure 5b) compared to the filtered RTM
image (Figure 5d).
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Figure 4. (a) A comparison between one trace of noisy and clean signals from the ob-
served data, (b) noise inversion using AA after 1000 gradient evaluations, (c) noise in-
version using L-BFGS after 1000 gradient evaluations, and (d) noise inversion using the
steepest descent after 1000 gradient evaluations.
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DISCUSSION

AA is a strategy proposed to speed up iterative schemes, particu-
larly fixed-point problems. In this paper, we modify the classic al-
gorithm and apply it to accelerate iterative optimization algorithms,
such as the gradient-descent method. AA has intrinsic connections
with GMRES and L-BFGS when solving specific types of prob-
lems. Therefore, we devote this section to detailed discussions
and analysis regarding their differences and the potential benefits
of AA. The ultimate goal is not to promote one method over another
but to better understand their roles in optimization problems.

Anderson acceleration and GMRES

GMRES is known as an iterative method to solve the square non-
symmetric linear system (Saad, 2003)

Ax ¼ b; A ∈ Cn×n: (23)

We define the kth Krylov subspace for this problem as

Kk ¼ KkðA; r0Þ ¼ spanfr0; Ar0; : : : ; Ak−1r0g; (24)

where r0 ¼ Ax0 − b and x0 is the initial guess. GMRES approxi-
mates the exact solution of Ax ¼ b by choosing the kth iterate
xk in the Krylov subspace Kk such that

xk ¼ argminx∈Kk
kAxk − bk2; (25)

which minimizes the Euclidean norm of the residual rk ¼ Axk − b.
Because the current Krylov subspace is contained in the next sub-
space,

Kk¼spanfx0;x1; :::;xk−1g⊆Kkþ1¼spanfx0;x1; :::;xk−1;xkg;
(26)

the residual rk monotonically decreases as the number of iterations
increases. There have been numerous variations and extensions of
the method over the decades (Saad, 2003).
In practice, it is not feasible to store all of the previous iterates

due to the limited machine memory. Instead, afterM iterations, one
can treat the iterate xM as the new initial guess x0, and construct the
new sequence of the Krylov subspace following equation 24. The
method is well-known as restarted GMRES and is often denoted as
GMRES(M). The restarted GMRES may suffer from stagnation in
convergence because the restarted subspace is often close to the ear-
lier subspace for matrix A with certain structures (Embree, 2003).
Different from restarted GMRES, AA saves memory by replacing
the oldest iteration x0 by the latest iterate xM if both methods share
the same memory parameter M and are applied to solve the square
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Figure 5. (a) The smooth background velocity m0 for RTM and
LSRTM, (b) the true reflectivity, (c) the original RTM result,
and (d) the RTM image after Laplacian filtering.
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Figure 6. (a) LSRTM using restarted GMRES, (b) LSRTM using
AA, (c) LSRTM using L-BFGS, and (d) LSRTM using the steepest
descent.
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linear system (equation 23). The main differences between the two
methods are illustrated as follows:

GMRESðMÞ∶spanfx0; x1; : : : ; xM−1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
theM-th subspace

→ spanfxMg|fflfflfflfflfflffl{zfflfflfflfflfflffl}
the next subspace

;

(27)

AAðMÞ∶spanfx0;x1; : : : ;xM−1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
theM-thsubspace

→ spanfx1;x2; : : : ;xMg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thenextsubspace

:

(28)

GMRES have been used in geophysical applications as a method
of solving forward problems, which are also linear PDEs (Erlangga
and Herrmann, 2008; Calandra et al., 2012). One should note that
the direct connections between AA and GMRES only apply when
the fixed-point operator G is based on the square linear problem, as
shown in equation 23. To date, there has been no proven equiva-
lence between AA applied to nonlinear operators and nonlinear
GMRES. There have been numerical comparisons between AA
of depth M and GMRES(M) in the literature (Pratapa et al.,
2016; Yang et al., 2020). Empirically, AA with memory parameter
M is observed to be more efficient than GMRES(M) for certain
nonlinear problems or linear problems with a nonpositive definite
matrix.
In FWI, we solve a nonlinear problem FðxÞ ¼ d, where F is the

forward wave operator and d is the observed data. Building Krylov
spaces for such large-scale applications, which is theoretically an
infinite-dimensional inverse problem, can be extremely costly.
For LSRTM, we are solving a linear problem Lmr ¼ dr, where L
is the Born operator and dr is the observed scattering data. However,
after discretization, matrix L has more rows than columns. GMRES
is not the best method for solving the linear system directly, and
LSQR could be a better alternative. Therefore, we reformulate
the problem of LSRTM so that it is suitable for GMRES. The results
are presented in Figure 6. We remark that using AA for LSRTM
accelerates the steepest-descent algorithm, but GMRES for
LSRTM, as it is done in this paper, is an optimization-free imple-
mentation.

Anderson acceleration and L-BFGS

A standard optimization method used in geophysics is L-BFGS,
where “L” indicates a variant of the BFGS algorithm with limited
memory. We also have used this method for inversion tasks in the
previous section. It belongs to the class of quasi-Newton methods,
which is preferred when the full Newton’s method is too time-con-
suming to apply. The Hessian matrix of a quasi-Newton method
does not need to be computed explicitly at every iteration. Instead,
an approximation Bk, which satisfies the following inverse secant
condition, is used instead of the true inverse Hessian at the kth iter-
ation:

BkðJðpkÞ − Jðpk−1ÞÞ ¼ pk − pk−1: (29)

Here, pk−1 and pk are two consecutive iterates and J is the objective
function that we aim to minimize. Quasi-Newton methods differ
among each other in how to update Bk, the approximation to the
inverse Hessian matrix. The BFGS algorithm follows two princi-

ples: (1) satisfy the inverse secant condition in equation 29 and
(2) be as close as possible to the approximation at the previous iter-
ation. The latter is translated as

Bk ¼ argmin
B∈Cn×n

kB − Bk−1k2F; (30)

where k · kF denotes the matrix Frobenius norm, i.e., kAk2F ¼P
n
i;j¼1 jAijj2. These conditions lead to explicit update schemes

for BFGS and L-BFGS as a result of the famous Sherman-Morri-
son-Woodbury formula (Nocedal and Wright, 2006). After replac-
ing the inverse Hessian matrix in Newton’s method with the
approximation Bk, the next iterate of the optimization problem is

pkþ1 ¼ pk − Bkfk ¼ pk þ ηBkGk; (31)

where Gk denotes the gradient of the objective function JðpÞ at
p ¼ pk.
Whereas the BFGS algorithm is a type of secant method, it is

worth addressing that AA is equivalent to a multisecant method
(Fang and Saad, 2009). If one chooses the l2-based AA regarding
equation 1 as we do in this paper, then the update formula (equa-
tion 2) with βk ¼ 1 can be rewritten as

pkþ1 ¼ pk − Skfk ¼ pk þ ηSkGk; (32)

where Sk ∈ Cn×n is the solution to the following constrained opti-
mization problem:

Sk ¼ argmin
S∈Cn×n

kSþ Ik2F; (33)

subject to the multisecant condition

SkDk ¼ Pk: (34)

Denoting Δpi ¼ piþ1 − pi, Δfi ¼ fiþ1 − fi, matrices Pk and Dk

are defined, respectively, as

Pk ¼ ½Δpk−M; : : : ;Δpk−1� ∈ Cn×M;

Dk ¼ ½Δfk−M; : : : ;Δfk−1� ∈ Cn×M: (35)

We have used the fact that fk ¼ GðpkÞ − pk ¼ −ηGk in equation 32.

Once we have rewritten the AA algorithm, it is not hard to rec-
ognize the similarities between the update formula of AA and that
of the L-BFGS method (see equations 31 and 32). The key differ-
ence is that matrices Sk and Bk are constructed under different prin-
ciples, although both can be regarded as approximations to the
inverse Hessian matrix in the full Newton’s method. For L-BFGS,
Bk satisfies the secant condition (equation 29), while minimizing
equation 30. For AA, Sk satisfies the multisecant condition (equa-
tion 34) while minimizing equation 33. Both methods are faster
than the steepest-descent algorithm and have been proven to have
superlinear convergence.
The original BFGS algorithm stores a dense n-by-n approxima-

tion to the inverse Hessian matrix, where n is the number of var-
iables. Besides, each BFGS iteration has a cost of Oðn2Þ arithmetic
operations. The idea of L-BFGS is to restrict the use of all iterations
in the history to the latest M iterates; M is a parameter of the
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L-BFGS algorithm that can be chosen a priori. Because the earlier
iterates often carry little information about the curvature of the
current iterate, the change from BFGS to L-BFGS is expected to
have minimal effects on the convergence rate. The L-BFGS method
has a linear memory requirement in terms of the number of varia-
bles. It is particularly well-suited for large-scale optimization prob-
lems such as FWI and LSRTM.
Similar to AA, L-BFGSmaintains a history of the pastM iterates

and their gradients. Again,M is often chosen to be small. The con-
nections are illustrated by the following diagram where Gk denotes
the gradient of the objective function at p ¼ pk:

L-BFGSðMÞ∶fp0; : : : ; pM−1;G0; : : : ;GM−1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
constructBM−1

→ fp1; : : : ; pM;G1; : : : ;GMg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
constructBM

; (36)

AAðMÞ∶fp0; : : : ; pM−1;G0; : : : ;GM−1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
construct SM−1

→ fp1; : : : ; pM;G1; : : : ;GMg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
construct SM

: (37)

We remark that the relationship above is valid only when AA is used
to accelerate the steepest-descent algorithm as what we propose in
this paper. The most expensive part of the L-BFGS algorithm is the
inverse Hessian update, and the most costly step of AA is to com-
pute the optimal coefficients. In terms of computational cost, the
low-rank QR update for AA, the inverse Hessian update for
L-BFGS, and the restarted GMRES all take OðnMÞ floating-point
operations (flops), if implemented optimally. The minimum
memory requirements for all three methods are also OðnMÞ, con-
sidering that the memory parameter for all of the methods isM and
the size of the unknown is n.

Performance comparison

We have seen the theoretical connections among AA, the restarted
GMRES, and the L-BFGS algorithm in the previous two subsections.
Although under the same memory parameter M, all of the methods
have the same order of computational cost andmemory requirements,
AA could be advantageous in the following two aspects.
First, when the iteration number is bigger than the memory

parameter M, AA always uses the last M iterates to construct
the solution for the next iteration. On the other hand, the restarted
GMRES nullifies all of the M iterates and restarts from zero once
the restart window is reached. Thus, AA can use more information
in the optimization than the restarted GMRES in most iterations.
The advantage is reflected in our numerical examples for LSRTM
(see Figure 6a and 6b).
One can only compare AA and GMRES when both methods are

used to find the solution x for problems in the form of Ax ¼ b, where
A is a square matrix. The flexibility of GMRES reduces for rectangle
matrices and highly nonlinear problems, whereas AA can be applied
to all types of linear and nonlinear problems as long as they are written
as fixed-point operators. One study has shown that the fixed-point op-
erator does not need to be a contraction for AA to converge, although
it is necessary for Picard iteration (Pollock and Rebholz, 2019).

Second, unlike the restarted GMRES, the L-BFGS algorithm uses
all of the lastM iterates to compute the next iteration. Although AA
and L-BFGS exploit all of the information available in storage, the
two methods approximate the inverse Hessian matrix in slightly
different ways: the former is a multisecantmethod, whereas the latter
is a secant method. We observe in Figure 2a and 2b that FWI using
AA spends less time searching for an appropriate step size than the
inversion using the L-BFGS method on average for each iteration.
It helps AA achieve better inversion results than L-BFGS under
the same number of total gradient evaluations. The inverse Hessian
matrix approximated by AA satisfies the secant condition not only for
the latest iteration but also for the previousM iterations. This implic-
itly enforces the connections among the neighbor iterates to avoid
unstable descent directions far from the curvature of the basin of
attraction.
Although it is expected that the bigger the memory parameter

M for AA, the better the performance, empirical studies have shown
that a relatively small M, commonly ranging from 3 to 20, is often
good enough to speed up the convergence of the fixed-point iteration
without a significant toll on the machine memory and the computa-
tional cost. In the experiments, the choice of the memory parameter
for AA could follow similar principles as choosing the memory
depth for L-BFGS and the restarted window for GMRES.

CONCLUSION

AA for seismic inversion treats the method of steepest descent as
a fixed-point operator. It speeds up the convergence by linearly
combining a list of the previous iterates in an optimized way. The
computational cost of implementing AA mainly comes from the 1D
optimization for the weights. It is thus easy to add AA to existing
optimization algorithms. As shown in this paper, AA outperforms
the steepest-descent method and also can be considered an alterna-
tive to L-BFGS. AA is equivalent to a multisecant method, whereas
the L-BFGS algorithm is derived by the secant method. Being com-
putationally attractive, AA is an efficient optimization algorithm for
FWI and LSRTM.
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