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Abstract

This work characterizes, analytically and numerically, two major effects of

the quadratic Wasserstein (W2) distance as the measure of data discrepancy in

computational solutions of inverse problems. First, we show, in the infinite-

dimensional setup, that theW2 distance has a smoothing effect on the inversion

process, making it robust against high-frequencynoise in the data but leading to

a reduced resolution for the reconstructed objects at a given noise level. Second,

we demonstrate that, for some finite-dimensional problems, the W2 distance

leads to optimization problems that have better convexity than the classical L2

and Ḣ−1 distances, making it a more preferred distance to use when solving

such inverse matching problems.

Keywords: quadraticWasserstein distance, inverse datamatching, optimal trans-

port, computational inverse problems, numerical optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

This paper is concerned with inverse problems where we intend to match certain given data

to data predicted by a (discrete or continuous) mathematical model, often called the forward

model. To set up the problem, we denote by a function m(x) :Rd → R (d � 1) the input of the

mathematical model that we are interested in reconstructing from a given datumg. We denote

by f the forward operator that maps the unknown quantity m to the datum g, that is

f (m) = g, (1)
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where the operator f is assumed to be nonlinear in general. We denote by A := f ′(m0) the lin-

earization of the operator f at the background m0. With a bit of abuse of notation, we write

Am = g to denote a linear inverse problem of the form (1) where f(m) :=Am. The space of

functions where we take our unknown objectm, denoted byM, and datum g, denoted by G, as
well as the exact form of the forward operator f :M �→ G, will be given later when we study
specific problems.

Inverse problems for (1) are mostly solved computationally due to the lack of analytic inver-

sion formulas. Numerical methods often reformulate the problem as a data matching problem

where one takes the solution as the functionm∗ that minimizes the data discrepancy, measured

in a metricD, between the model prediction f(m) and the measured datum g. That is,

m∗ = arg min
m∈M

Φ(m), with, Φ(m) :=
1

2
D

2( f (m), g). (2)

The most popular metric used in the past to measure the prediction-data discrepancy is the L2

metric D( f (m), g) :=‖ f (m)− g‖L2(Rd) due to its mathematical and computational simplicity.

Moreover, it is often the case that a regularization term is added to the mismatch functional

Φ(m) to impose extra prior knowledge on the unknown m (besides of the fact that it is an

element ofM) to be reconstructed.

In recent years, the quadratic Wasserstein metric [1–3] is proposed as an alternative for

the L2 metric in solving such inverse data matching problems [4–13]. Numerical experiments

suggest that the quadratic Wasserstein metric has attractive properties for some inverse data

matching problems that the classical L2 metric does not have [14, 15]. The objective of this

work is trying to understand mathematically these numerical observations reported in the lit-

erature. More precisely, we attempt to characterize the numerical inversion of (1) based on

the quadratic Wasserstein metric and compare that with the inversion based on the classical L2

metric.

In the rest of the paper, we first briefly review some background materials on the quadratic

Wasserstein metric and its connection to inverse data match problems in section 2. We then

study in section 3 the Fourier domain behavior of the solutions to (1) in the asymptotic regime

of the Wasserstein metric: the regime where the model prediction f and the datum g are suffi-

ciently close. We show that in the asymptotic regime, the Wasserstein inverse solution tends to

be smoother than the L2 based inverse solution. We then show in section 4 that this smoothing

effect of the Wasserstein metric also exists in the non-asymptotic regime, but in a less explicit

way. In section 5, we demonstrate, in perhaps overly simplified settings, some advantages of

the Wasserstein metric over the L2 metric in solving some important inverse matching prob-

lems: inverse transportation, back-projection from (possibly partial) data, and deconvolution

of highly concentrated sources. Numerical simulations are shown in section 6 to demonstrate

the main findings of our study. Concluding remarks are offered in section 7.

2. Background and problem setup

Let f and g be two probability densities on Rd that have the same total mass. The square of the

quadratic Wasserstein distance between f and g denoted as W2
2 ( f , g), is defined as

W2
2 ( f , g) := inf

T∈T

∫

Rd

|x− T(x)|2 f (x)dx, (3)

where T is the set of measure-preserving maps from f to g. The map T that achieves the infi-

mum is called the optimal transport map between f and g. In the context of (1), the probability

2
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density f depends on the unknown functionm. Therefore,W2
2 ( f , g) can be viewed as amismatch

functional of m for solving the inverse problem.

Since the quadratic Wasserstein distance is only defined between probability measures of

the same total mass, one has to normalize f and g and turn them into probability densities

when applying them to solve inverse matching problemswhere f and g cannot be interpreted as

nonnegativeprobability density functions. This introduces new issues that need to be addressed

[16]; see more discussions at the end of section 7. The analysis in the rest of the paper assumes

that f and g are both nonnegative and have the same total mass.

It is well-knownby now that the quadraticWasserstein distance between f and g is connected

to a weighted Ḣ−1 distance between them; see [3, section 7.6] and [17, 18]. For any s ∈ R, let

Hs(Rd) be the space of functions

Hs(Rd) :=

{
m(x) : ‖m‖2Hs(Rd )

:=

∫

Rd

〈ξ〉2s|m̂(ξ)|2dξ < +∞

}

where m̂(ξ) denotes the Fourier transform of m(x) and 〈ξ〉 :=
√
1+ |ξ|2. When s � 0,Hs(Rd)

is the usual Hilbert space of functions with s square integrable derivatives, and H0(Rd) =

L2(Rd). The spaceH−s(Rd) with s > 0 is understood as the dual ofHs(Rd). We also introduce

the space Ḣs(Rd), s > 0, with the (semi)-norm ‖ · ‖Ḣs(Rd) defined through the relation

‖m‖2Hs(Rd)
= ‖m‖2

L2(Rd )
+ ‖m‖2

Ḣs(Rd )
.

The space Ḣ−s(Rd) is defined as the dual of Ḣs(Rd) via the norm

‖m‖Ḣ−s := sup{|〈w,m〉| : ‖w‖Ḣs � 1}. (4)

It was shown [33, section 7.6] that asymptoticallyW2 is equivalent to Ḣ
−1
(dμ), where the subscript

(dμ) indicates that the space is defined with respect to the reference probability measure dμ =

f(x)dx. To be precise, if μ is the probability measure and dπ is an infinitesimal perturbation

that has zero total mass, then

W2(μ,μ+ dπ) = ‖dπ‖Ḣ−1
(dμ)

+ o(dπ). (5)

This fact allows one to show that, for two positive probabilitymeasures μ and ν with densities f
and g that are sufficiently regular, we have the following non-asymptotic equivalence between

W2 and Ḣ
−1
(dμ):

c1‖μ− ν‖Ḣ−1
(dμ)

� W2(μ, ν) � c2‖μ− ν‖Ḣ−1
(dμ)

, (6)

for some constants c1 > 0 and c2 > 0. The second inequality is generic with c2 = 2 [18,

theorem 1] while the first inequality, proved in [17, proposition 2.8] and [18, theorem 5]

independently, requires further that f and g be bounded from above.

In the rest of this paper, we study numerical solutions to the inverse data matching problem

for (1) under three different mismatch functionals:

ΦHs (m) ≡
1

2
| f (m)− g|2Hs :=

1

2

∫

Rd

〈ξ〉2s| f̂ (m)(ξ)− ĝ(ξ)|2dξ, (7)

ΦHs
(dμ)

(m) ≡
1

2
| f (m)− g|2

Hs
(dμ)

:=
1

2

∫

Rd

∣∣∣ω̂ �
[
〈ξ〉s( f̂ (m)(ξ) − ĝ(ξ))

]∣∣∣
2

dξ, (8)

3



Inverse Problems 36 (2020) 055001 B Engquist et al

where ω(x) = 1/g(x), � denotes the convolution operation, and

ΦW2
(m) ≡

1

2
W2

2 ( f (m), g) :=
1

2
inf
T∈T

∫

Rd

|x− T(x)|2 f (m(x))dx. (9)

Our main goal is to analyze the differences between the Fourier contents of the inverse match-

ing results, a main motivation for us to choose the Fourier domain definition of theH norms.

These norms allow us to systematically study: (i) the differences between the L2 (i.e. the spe-

cial case of s = 0 ofΦHs(m)) and theHs, with a positive or negative s, inversion results; (ii) the

differences betweenHs andHs
(dμ) inversion results caused by the weight dμ; and (iii) the sim-

ilarities and differences between Hs
(dμ) and W2 inversion results. This is our roadmap toward

better understandingsof the differences betweenL2-based andW2-based inverse datamatching.

Remark 2.1. Note that since the Ḣs norm is only a shift away from the correspondingHs

norm in the Fourier representation, by replacing 〈ξ〉 with |ξ|, we do not introduce extra mis-

match functionals for those (semi)-norms. We will, however, discuss Ḣs inversions when we

study the correspondingHs inversions.

Remark 2.2. In the definition of the Hs
(dμ) objective function, we take the weight function

ω(x) = 1/g(x) such that ‖ f − g‖2
Ḣ−1

(dμ)

is consistent with the linearization ofW2
2 ( f , g) [3].

We refer interested readers to [3, 17, 18] for technical discussions on the results in (5) and

(6) (undermore general settings thanwhat we present here) that connectW2 with Ḣ
−1
(dμ). For our

purpose, these results say that: (i) in the asymptotic regimewhen two signals f and g, both being

probability density functions, are sufficiently close to each other, theirW2 distance can be well

approximated by their Ḣ−1
(dμ) distance; and (ii) if W2( f, g) = 0, then ‖ f − g‖Ḣ−1

(dμ)
= 0 and vice

versa, that is, the exact matching solutions to the model (1), if exists, are global minimizers to

bothΦW2
(m) andΦH−1

(dμ)
(m). However, let us emphasize that the non-asymptotic equivalence in

(6) does NOT imply that the functional ΦW2
(m) and ΦḢ−1

(dμ)
(m) (if we define one) have exactly

the same optimization landscape. In fact, numerical evidences show that the two functionals

have different optimization landscapes that are both quite different from that of theL2 mismatch

functionalΦL2(m) :=ΦH0(m); see for instance section 5 for analytical and numerical evidences.

3. Frequency responses in asymptotic regime

We first study the Fourier-domain behavior of the solutions to (1) obtained by minimizing

the functionals we introduced in the previous section. At the solution, f(m) and g are suffi-

ciently close to each other. Therefore theirW2 distance can be replacedwith their Ḣ
−1
(dμ) distance

according to (5). In the leading order, theW2 solution is simply the Ḣ−1
(dμ) solution in this regime.

3.1. Hs-based inverse matching for linear problems

Let us start with a linear inverse matching problem given by the model:

Am = gδ , (10)

where gδ denotes the datum g in (1) polluted by an additive noise introduced in the measuring

process. The subscript δ is used to denote the size (in appropriate norms to be specified soon)

of the noise, that is, the size of gδ − g. Besides, we assume that gδ is still in the range of

the operator A. When the model is viewed as the linearization of the nonlinear model (1), m

4
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should be regarded as the perturbation of the background m0. The model perturbation is also

often denoted as δm. We assume that the linear operator A is diagonal in the Fourier domain,

that is, it has the symbol,

Â(ξ) ∼ 〈ξ〉−α, (11)

for some α ∈ R. This assumption is to make some of the calculations more concise but is

not essential as we will comment on later; see remark 3.3. When the exponent α > 0, the

operator A is ‘smoothing’, in the sense that it maps a given m to an output with better regu-

larity than m itself. The inverse matching problem of solving for m in (10), on the other hand,

is ill-conditioned (so would be the corresponding nonlinear inverse problem f(m) = g if A is

regarded as the linearization of f ). The size of α, to some extent, can describe the degree of

ill-conditionedness of the inverse matching problem.

We assume a priori that m ∈ Hβ(Rd) for some β > 0. Therefore, A could be viewed as

an operator A :Hβ �→ Hβ+α. We now look at the inversion of the problem under the Hs (s �

α+ β) framework.

We seek the solution of the inverse problem as the minimizer of theHs functionalΦHs (m),

defined as in (7) with f(m) = Am and g replaced with gδ . We verify that the Fréchet derivative

of ΦHs :Hβ �→ R�0 at m in the direction δm is given by

Φ
′
Hs (m)[δm] =

∫

Rd

Â∗(ξ)

{
〈ξ〉2s

[
Â(ξ)m̂(ξ)− ĝδ(ξ)

]}
δ̂m(ξ)dξ,

where we used A∗ to denote the L2 adjoint of the operatorA. The minimizer ofΦHs is located at

the place where its Fréchet derivative vanishes. Therefore the minimizer solves the following

(modified) normal equation at frequency ξ:

Â∗(ξ)
{
〈ξ〉2sÂ

}
m̂ = Â∗(ξ)

{
〈ξ〉2sĝδ(ξ)

}
. (12)

The solution at frequency ξ is therefore

m̂(ξ) =
(
Â∗(ξ)

(
〈ξ〉2sÂ

))−1

Â∗(ξ)
(
〈ξ〉2sĝδ(ξ)

)
.

We can then perform an inverse Fourier transform to find the solution in the physical space.

The result is

m =
(
A∗PA

)−1
A∗Pgδ, P := (I −∆)s/2, (13)

where the operator (I −∆)s/2 is defined through the relation

(I −∆)s/2m :=F−1
(
〈ξ〉sm̂

)
,

F−1 being the inverse Fourier transform, ∆ being the usual Laplacian operator, and I being

the identity operator.

Key observations. Let us first remark that the calculations above can be carried out in the

same way if the Hs norm is replaced with the Ḣs norm. The only changes are that 〈ξ〉 should
be replaced with |ξ| and the operator I −∆ in P has to be replaced with −∆.

When s = 0, assuming that α+ β � 0, the above solution reduces to the classical L2 least-

squares solutionm = (A∗A)−1A∗gδ. Moreover, when A is invertible (so will be A∗), the solution

can be simplified to m = A−1gδ , using the fact that (A∗PA)−1
= A−1P−1A−∗, which is simply

the true solution to the original problem (10). Therefore, in the same manner, as the classical

5
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L2 least-squares method, the least-squares method based on the Hs norm does not change the

solution to the original inverse problem when it is uniquely solvable. This is, however, not the

case for the Ḣs inversion in general. For instance, Ḣ1 inversion only matches the derivative of

the predicted data to the measured data.

When s > 0, P is a differential operator. Applying P to the datum gδ amplifies high-

frequency components of the datum. When s < 0, P is a (smoothing) integral operator. Apply-

ing P to the datum gδ suppresses high-frequency components of the datum. Even though the

presence of the operator P in (A∗PA)−1 will un-do the effect of P on the datum in a perfect

world (when A is invertible, and all calculations are done with arbitrary precision), when oper-

ated under a given accuracy, inversion with s < 0 is less sensitive to high-frequency noise in

the data while inversion with s > 0 is more sensitive to high-frequency noise in the data, com-

pared to the case of s = 0 (that is, the classical L2 least-squares inversion). Therefore, inversion

with s = 0 can be seen as a ‘preconditioned’ (by the operator P) L2 least-squares inversion.

3.2. Resolution analysis of linear inverse matching

We now perform a simple resolution analysis, following the calculations in [19], on the Hs

inverse matching result for the linear model (10).

Theorem 3.1. Let A be given as in (11) and Rc an approximation to A
−1 defined through its

symbol:

R̂c(ξ) ∼

{
〈ξ〉α, |ξ| < ξc

0, |ξ| > ξc

Let δ = ‖gδ − g‖Hs be the Hs norm of the additive noise in gδ . Then the reconstruction error

‖m− mc
δ‖L2 , with m

c
δ :=Rcgδ obtained as the minimizer of Φ(m)Hs , is bounded by

‖m− mc
δ‖L2 � ‖m‖

α−s
α+β−s

Hβ δ
β

α+β−s . (14)

This optimal bound is achieve when we select

〈ξc〉
−1 ∼ (δ‖m‖−1

Hβ )
1

α+β−s . (15)

Proof. Following classical results in [20], it is straightforward to verify that the L2 difference

between the true solution m and the approximated noisy solution mc
δ is

‖m− mc
δ‖L2 = ‖m− Rcgδ‖L2 = ‖m− Rcg+ Rcg− Rcgδ‖L2

= ‖(I − RcA)m+ Rc(g− gδ)‖L2 � ‖(I − RcA)m‖L2 + ‖Rc(g− gδ)‖L2 . (16)

We then verify that operatorsI − RcA :Hβ(Rd) �→ L2(Rd) andRc :H
s(Rd) �→ L2(Rd) have the

following norms respectively

‖Rc‖Hs �→L2 ∼ 〈ξc〉
α−s and ‖(I − RcA)‖Hβ �→L2 ∼ 〈ξc〉

−β.

This allows us to conclude that

‖m− mc
δ‖L2 � ‖Rc‖Hs �→L2δ + ‖(I − RcA)‖Hβ �→L2

×‖m‖Hβ � 〈ξc〉
α−sδ + 〈ξc〉

−β‖m‖Hβ .

We can now select 〈ξc〉 ∼ (δ−1‖m‖Hβ )
1

α+β−s , i.e. the relation given in (15), to minimize the

error of the reconstruction, which gives the bound in (14). �

6
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Optimal resolution. One main message carried by the theorem above is that reconstruction

based on the Hs mismatch has a spatial resolution

ε := 〈ξc〉
−1 ∼ δ

1
α+β−s ,

under the conditions in the theorem. At a fixed noise level δ, for fixed α and β, the optimal

resolution of the inverse matching result degenerates when s gets smaller. The case of s = 0

corresponds to the usual reconstruction in the L2 framework. The optimal resolution one could

get in this case is decided by δ
1

α+β . When 0 < s (� α+ β), the best resolution one could get is
better than the L2 case in a perfect world.When s < 0, the reconstructions in theHs framework

provides an optimal resolution that is worse than the L2 case. In otherwords, the reconstructions

based on the negative norms appear to be smoother than optimal L2 reconstructions in this case.

See section 6 for numerical examples that illustrate this resolution analysis.

However,we should emphasize that the above simple calculation only provides the best-case

scenarios. It does not tell us exactly how to achieve the best results in a general setup (when the

symbol of A, i.e., the singular value decomposition of A in the discrete case, is not precisely

known). Nevertheless, the guiding principle of the analysis is well demonstrated: least-squares

with a stronger (than the L2) norm yield higher resolution reconstructions while least-squares

with a weaker norm yield lower (again compared to the L2 case) resolution reconstructions in

the best case.

3.3. Hs
(dμ)-based inverse matching for linear problems

Inverse matching with the weighted Hs norm can be analyzed in the same manner to study

the impact of the weight on the inverse matching result. The solution m to (10) in this case is

sought as the minimizer of the functionalΦHs
(dμ)

(m) defined in (8) with f(m) = Am and g = gδ .

This means that the weight ω = 1/gδ in our definition of the objective function.
Following the same calculation as in the previous subsection, we find that the minimizer of

the functional ΦHs
(dμ)

(m) solves the following normal equation at frequency ξ:

B̂∗ω̂ �
(
〈ξ〉sÂm̂

)
= B̂∗ω̂ �

(
〈ξ〉sĝδ

)
(17)

where B̂∗ is the L2 adjoint of the operator B̂ defined through the relation B̂m̂: = ω̂ �
(
〈ξ〉sÂm̂

)
.

We first observe that the right-hand side of (17) and that of (12) are different. In (12), the

ξ-th Fourier mode of the datum gδ is amplified or attenuated, depending on the sign of s, by a

factor of 〈ξ〉2s. While in (17), this mode is further convoluted with other modes of the datum

after the amplification/attenuation. The convolution induces mixing between different modes

of the datum. Therefore, inverse matching with the weighted norm cannot be done mode by

mode as what we did for the unweighted norm, even when we assume that the forward operator

A is diagonal. However, main effect of the norm on the inversion, the smoothing/sharpening

effect introduced by the 〈ξ〉2s factor (half of which come from the factor 〈ξ〉s in front of ĝδ
while the other half come from the factor 〈ξ〉s in B̂), are the same in both the unweightedHs

and the weightedHs
(dμ) norms.

The inverse matching solution, in this case, written in physical space, is

m =
(
A∗PgA

)−1
A∗Pggδ, Pg := (I −∆)s/2ω(I −∆)s/2. (18)

We can again compare this with the unweighted solution in (13). The only difference is the

introduction of the inhomogeneity, which depends on the datum gδ , in the preconditioning

7
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operator P by replacing it with Pg. When 0 < s (� α+ β), P and Pg are (local) differen-

tial operators. Roughly speaking, compared to P, Pg emphasizes places where gδ is small,

be reminded that ω = 1/gδ, or the sth order derivative of gδ is large. At those locations, Pg
amplifies the same modes of the datum gδ more than P does. When s < 0, P and Pg are non-

local operators. The impact of gδ is more global (as we have seen in the previous paragraph in

the Fourier domain). It is hard to precisely characterize the impact of gδ without knowing its

form explicitly. However, we can still see, for instance, from (17), that the smoother gδ is, the

smoother the inverse matching result will be (since ĝδ has fast decay and the convolution will

further smooth out 〈ξ〉sgδ). If gδ is very rough, say that it behaves like Gaussian noise, then

ĝδ decays very slowly. The convolution, in this case, will not smooth out 〈ξ〉sgδ as much as in

the previous case. The main effect of Hs
(dμ) on the inverse matching result in this case mainly

comes from the norm, not the weight.

Remark 3.2. Thanks to the asymptotic equivalencebetween Ḣ−1
(dμ) andW2 in (5), the smooth-

ing effect we observe in this section for theH−1
(dμ) inverse matching (and therefore Ḣ−1

(dμ) inverse

matching since Ḣ−1
(dμ) is only different fromH−1

(dμ) on the zeroth moment in the Fourier domain)

is also what we observe in theW2 inverse matching. This observation will be demonstrated in

more detail in our numerical simulations in section 6.

3.4. Iterative solution of nonlinear inverse matching

The simple analysis in the previous sections based on the linearized quadraticWasserstein met-

ric, i.e., a weighted Ḣ−1 norm, on the inverse matching of linear model (10) does not translate

directly to the case of inverse matching with the fully nonlinear model (1). Nevertheless, the

analysis does provide us some insights.

Let us consider an iterative matching algorithm for the nonlinear problem, starting with a

given initial guess m0, characterized by the following iteration:

mk+1 = mk + 
k ζk, k � 0, (19)

where ζk is a chosen descent direction of the objective functional at iteration k, and 
k is the
step length at this iteration. For simplicity, let us take the steepest descent method where the

descent direction is taken as the negative gradient direction. Following the calculations in the

previous section, we verify that the Fréchet derivative of ΦHs
(dμ)

(m) :Hβ �→ R�0 at the current

iteration mk in the direction δm is given by

Φ′

Hs
(dμ)

(mk)[δm] =

∫

Rd

ω̂ �
[
〈ξ〉s( f̂ (mk)− ĝδ)

]
ω̂ � 〈ξ〉s ̂f ′(mk)[δm]dξ, (20)

assuming that the forward model f :Hβ �→ Hs
(dμ) is Fréchet differentiable at mk with deriva-

tive f ′(mk)[δm]. This leads to the following descent direction ζk chosen by a gradient descent

method:

ζk = −
(
f ′(mk)

∗Pg f
′(mk)

)−1
f ′(mk)

∗Pg( f (mk)− gδ), (21)

Let us compare this with the descent direction resulted from the L2 least-squares functional:

ζk =
(
f ′(mk)

∗ f ′(mk)
)−1

f ′(mk)
∗( f (mk)− g). (22)

We see that the iterative process of the Hs
(dμ) inverse matching can be viewed as a precondi-

tioned version of the corresponding L2 iteration. The preconditioning operator, Pg, depends on

8
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the datum gδ but is independent of the iteration. When the iteration is stopped after a finite

step, the effect we observed for linear problems, that is, the smoothing effect of Pg in the case

of s < 0 or its de-smoothing effect in the case of s > 0, is carried to the solution of nonlinear

problems.

Wasserstein smoothing in the asymptotic regime. To summarize, when the model predic-

tions and the measured data are sufficiently close to each other, inverse matching with the

quadratic Wasserstein metric, or equivalently the Ḣ−1
(dμ) metric, can be viewed as a precondi-

tioned L2-based inverse matching. The preconditioning operator is roughly the inverse Lapla-

cian operator with a coefficient given by the datum. The optimal resolution of the inversion

result from the Wasserstein metric, with data at a given noise level δ is roughly of the order

δ
1

α+β+1 (α being the order of the operator f ′(m) at the optimal solution and m ∈ Hβ) instead

of δ
1

α+β as given in the L2 case. The shape of the datum gδ distorts the Wasserstein matching

result slightly from the inverse matching result with a regular Ḣ−1 (semi)-norm.

Remark 3.3. The assumption that the linear operator A is diagonal in the Fourier domain,

given in (11), simplifies the calculations in this section. The assumption is not necessary at all to

show the preconditioning effect of theW2 metric. Without this assumption, we need to replace

all the multiplication of Â in the Fourier domain with convolutions. The final results remain

the same. The assumption is indeed necessary in order to write down the approximate inverse

operator Rc in the Fourier domain explicitly. This leads to a precise resolution characterization

in theorem 3.1 for this reconstruction operator.

4. Wasserstein iterations in non-asymptotic regime

As we have seen from the previous sections, in the asymptotic regime, the smoothing effect of

the quadratic Wasserstein metric in solving inverse matching problems can be characterized

relatively precise thanks to the equivalence between W2 and Ḣ−1
(dμ) given in (5). The demon-

strated smoothing effect makesW2-based inverse matching very robust against high-frequency

noise in the measured data. This phenomenon has been reported in the numerical results pub-

lished in recent years [4, 6, 13–15] and is one of the main reasons that W2 is considered as a

good alternative for L2-based matching methods. In this section, we argue that the smoothing

effect ofW2 can also be observed in the non-asymptotic regime, that is, a regime where signals

f and g are sufficiently far away from each other. The smoothing effect in the non-asymptotic

regime implies that the landscape of the W2 objective functional is smoother than that of the

classical L2 objective functional.

To see the smoothing effect ofW2 in non-asymptotic regime, we analyze the inverse match-

ing procedure described by the iterative scheme (19) for the objective functional ΦW2
(m),

defined in (9). For the sake of being technically correct, we assume that the data we are com-

paring in this section are sufficiently regular. More precisely, we assume that f ∈ C0,α(Rd)

and g ∈ C0,α(Rd) for some α > 0. We also assume that the map m �→ f (Hβ →C0,α) is Fréchet

differentiable at any admissible m and denote by f ′(m)[δm] the derivative in direction δm. We

can then write down the variation of ΦW2
(m) : Hβ �→ R�0 at the current iteration mk in the

direction δm, following the differentiability result of W2
2 ( f , g) with respect to f along mass

preserving perturbations [3, theorem 8.13]. It is,

Φ
′
W2
(mk)[δm] =

∫

Rd

(
|x− Tk(x)|

2

2
f ′(mk)[δm]− (x− Tk(x)) f (x) · T

′
k

[
f ′(mk)[δm]

])
dx,

(23)

9
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where Tk denotes the optimal transport map at iteration k (that is, for mk), and Tk
′[δf] denotes

the variation of Tk with respect to f (not m) in the direction δf. We emphasize again that δm
is selected such that

∫
Rd
f (mk)dx =

∫
Rd
f (mk + δm)dx which is necessary since the space of

probability densities with theW2 metric is not a linear space.

Following the optimal transport theorem of Brenier [3], the optimal transport map at the

current iteration k, Tk, is given as Tk(x): = ∇u(x) where u is the unique (up to a constant)

convex solution to the Monge–Ampère equation:

det(D2u(x)) = f (mk(x))/g(∇u(x)), u being convex. (24)

Here D2 is the Hessian operator defined through the Hessian matrix D2u := ( ∂2u
∂xi∂x j

) (with the

notation x = (x1, . . . , xd)). Interested readers are referred to [3] and the references therein

for more detailed mathematical study on the existence and uniqueness of solutions to the

Monge–Ampère equation (24).

Let ϕ := u′( f(mk))[δf ] be the Fréchet derivative of u at f(mk) in the direction δf, we then

verify that ϕ solves the following second-order elliptic equation to the leading order:

∑

i j

ai j
∂2ϕ

∂xi∂x j
+
∑

j

b j
∂ϕ

∂x j
= δ f , (25)

where b j = det(D2u)∂x jg(Tk(x)) while aij depend on the dimension. When d = 2, ai j =

−g(Tk(x))
∂2u

∂x j∂xi
(i = j) and aii = g(Tk(x))

∂2u
∂x j∂x j

(i = j). When d = 3, we have

ai j = g(Tk(x))

⎧
⎪⎪⎨
⎪⎪⎩

∂2u

∂xk∂xi

∂2u

∂x j∂xk
−

∂2u

∂x j∂xi

∂2u

∂xk∂xk
, i = j = k,

∂2u

∂xk′∂xk′

∂2u

∂xk∂xk
−

∂2u

∂xk′∂xk

∂2u

∂xk∂xk′
, i = j = k = k′.

Let ψ be the solution to the (adjoint) equation:

∑

i j

ai j
∂2ψ

∂xi∂x j
−
∑

j

b j
∂ψ

∂x j
= −∇ · ((x− Tk(x)) f (x)) . (26)

It is then straightforward to verify, following standard adjoint state calculations [21], that

update direction can be written as

ζk(x) = f ′∗(mk)

[
|x− Tk(x)|

2

2
+ ψ(x)

]
, (27)

where f ′∗(mk) denotes the L
2 adjoint of the operator f ′(mk).

We first observe that unlike in the classical L2 case where f ′∗(mk) is applied directly to the

residual f(mk)− g, that is, ζk(x) = f ′∗(mk) [ f (mk)− g], the descent direction here depends on

the model prediction f(mk) and the datum g only implicitly through the transfer map I− Tk

and its variation with respect to m. Only in the asymptotic regime of g being very close to f can

we make the connection between
|x−Tk(x)|

2

2
+ ψ(x) and the normalized residual. This is where

the Ḣ−1
(dμ) approximation to W2 comes from.

From Caffarelli’s regularity theory (e.g. [3, theorem 4.14]), which states that when f ∈
C0,α(Rd) and g ∈ C0,α(Rd) we have that the Monge–Ampère solution u ∈ C2,α(Rd), we see

that (x− Tk(x)) is at least C
1,α. Therefore the solution to the adjoint problem, ψ, is in C2,α by

standard theory for elliptic partial differential equations when the problem is not degenerate

10
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Figure 1. The gradients of the objective functions ΦL2 (m) (left),Φ·H−1(m) (middle) and
ΦW2

(m) (right) at the initial guess for the inverse diffusion problem in section 6.2 in the
one-dimensional domain Ω = (0, 1).

Figure 2. The gradients of the objective functions ΦL2 (m) (left),Φ·H−1 (m) (middle) and
ΦW2

(m) (right) at the initial guess for the inverse diffusion problem in section 6.2 in the
two-dimensional domain Ω = (0, 1)× (0, 1).

and in C1,α if it is degenerate. Therefore, |x−Tk(x)|
2

2
+ ψ(x) ∈ C1,α is one derivative smoother

than f and g (and therefore the residual). This is exactly what the preconditioning operator P

(with s = −1) did to the residual in the asymptotic regime, for instance, as shown in (13). This

shows thatW2 inverse matching has smoothing effect even in the non-asymptotic regime.

In one-dimensional case, we can see the smoothing effect more explicitly since we are

allowed to construct the optimal map explicitly in this case. Let F andG be the cumulative den-

sity functions for f and g respectively. The optimal transportation theorem in one-dimensional

setting (e.g. [3, theorem 2.18]) then says that the optimal transportationmap from f to g is given

by T(x) = G−1F(x). This allows us to verify that, the gradient of ΦW2
(m) atmk in direction δm,

given in (23), is simplified to:

Φ
′
W2
(mk)[δm] =

∫

R

(
(x− Tk(x))

2

2
+ pk(+∞)− pk(x)

)
f ′(mk)[δm] dx

=

∫

R

f ′∗(mk)

[
(x− Tk(x))

2

2
− pk(+∞)+ pk(x)

]
δm(x) dx

(28)

11
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where the function pk(x) is defined as pk(x) =
∫ x
−∞

(y−Tk(y)) f (mk (y))
g(Tk(y))

dy. Therefore the descent

direction (27) simplifies to

ζk(x) = f ′∗(mk)

[
(x− Tk(x))

2

2
− pk(+∞)+ pk(x)

]
. (29)

It is clear from (29) that the gradient of ΦW2
(m) at iteration k depends only on the anti-

derivatives of f(mk), g and f(mk)/g(Tk), through Tk(x) and pk. Therefore, it is smoother than

the Fréchet derivative of ΦL2(m) in general, whether or not the signals f(mk) and g are close

to each other. This shows why the smoothing effect of W2 exists also in non-asymptotic

regime.

To provide some numerical evidences, we show in figures 1 and 2 some gradients of the

L2 and W2 objective functions, with respect to the absorption coefficient σ (i.e. m = σ), for
the inverse diffusion problem we study in section 6.2, in one- and two-dimensional domains

Ω = (0, 1) and Ω = (0, 1)× (0, 1) respectively. The synthetic data, generated by applying the

forward operator to the true absorption coefficient and then addingmultiplicative randomnoise,

contains roughly 5% of random noise. We intentionally choose initial guesses to be relatively

far away from the true coefficient so that the model prediction f(m) is far from the data g to

be matched. We are not interested in a direct quantitative comparison between the gradient of

the Wasserstein objective function and that of the L2 objective function since we do not have

a good basis for the comparison. However, it is evident from these numerical results that the

gradient of the Wasserstein functional is smoother, or contains fewer frequencies to be more

precise, compared to the corresponding L2 case.

5. Wasserstein inverse matching for transportation and convolution

Its robustness against high-frequency noise in data, resulted from its smoothing effect we

demonstrated in the previous two sections, is not the only reason whyW2 is thought as better

than L2 formany inverse data matching problems.We show in this section another advantage of

theW2 distance in studying inversematching problems: its convexitywith respect to translation

and dilation of signals.

5.1. W2 convexity with respect to affine transformations

For a given probability density function φ with finite moments M1 :=
∫
Rd
xφ(x)dx and

M2 :=
∫
Rd
|x|2φ(x)dx, we define

f (m(x)) :=
1√
|Σ|

φ
(
Σ

− 1
2 (x− λx̄)

)
. (30)

where m := (Σ,λ, x̄) with Σ ∈ Rd×d symmetric and positive-definite, λ ∈ R and x̄ ∈ Rd. This

f is simply a translation (by λx̄) and dilation (by Σ
1/2) of the function φ. We verify that∫

Rd
f (m(x))dx =

∫
Rd
φ(x)dx.

Let g = f(mg) be generated from mg := (Σg,λg, x̄g) with Σg ∈ Rd×d symmet-

ric and positive-definite. Then we check that the optimal transport map from f

to g is given by T(x) = Σ
1/2
g Σ

−1/2(x− λx̄)+ λgx̄g. In other words, the function

u(x) = 1
2
(x− x̄)tΣ−1/2

g Σ1/2(x− x̄)+ x̄g · x is a convex solution to the Monge–Ampère

12
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Figure 3. Top row: plots of the ‖ f − g‖2
L2

(left), ‖ f − g‖2
Ḣ−1 (middle) and W2

2 ( f , g)

(right) for the φ(x) given in (34) in the two-dimensional region λx̄− λgx̄g ∈ [−10, 10]2

with Σ = Σg = I2. Bottom row: the corresponding cross-sections along the left bottom
to top right diagonal.

equation (24) with this (f, g) pair. This observation allows us to find that,

W2
2 ( f , g) = |λx̄− λgx̄g|

2 + 2(λx̄− λgx̄g)
t(Σ1/2 − Σ1/2

g )M1 +

∫

Rd

|(Σ1/2 − Σ1/2
g )x|2φ(x)dx.

(31)

This calculation shows thatW2
2 ( f , g) is convex with respect to λx̄− λgx̄g and Σ

1/2 − Σ
1/2
g for

rather general probability density function φ.
For the purpose of comparison, we recall that the L2 distance between f and g in this case is

given by

‖ f − g‖2
L2

=

(
1

|Σ1/2|
+

1

|Σ1/2
g |

)∫

Rd

φ2(y)dy

−
2

|Σ1/2
g |

∫

Rd

φ(y)φ
(
Σ−1/2
g Σ1/2y+Σ−1/2

g (λx̄− λgx̄g)
)
dy, (32)

and the Ḣ−1 distance between f and g in this case is given by

‖ f − g‖2
Ḣ−1 =

∫

Rd

|ξ|−2
(
|φ̂(Σ1/2ξ)|2 + |φ̂(Σ1/2

g ξ)|2

− 2�
[
φ̂(Σ1/2ξ)φ̂(Σ1/2

g ξ)ei(λx̄−λgx̄g)·ξ
])

dξ. (33)

13
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By simple Taylor expansions, we see that ‖ f − g‖2
L2
and ‖ f − g‖2

Ḣ−1 are indeed convex when

Σ
1/2 − Σ

1/2
g andλx̄ − λgx̄g are sufficiently small. However, neither ‖ f − g‖2

L2
nor ‖ f − g‖2

Ḣ−1

is globally convex with respect to Σ
1/2 − Σ

1/2
g or λx̄ − λgx̄g for a general probability density

φ(x). This is one of the major differences betweenW2, L
2 and Ḣ−1. To visualize this advantage

of W2, we plot in figure 3 the functionals W2
2 ( f , g), ‖ f − g‖2

L2
and ‖ f − g‖2

Ḣ−1 in the two-

dimensional region Ω = [−10, 10]2 with fixed Σ = Σg = I2 for

φ(x) =
1

4π

[
e−

1
2
|x−y1|

2

+ e−
1
2
|x−y2|

2
]
, y1 = (−2,−2), y2 = (2, 2). (34)

The plots clearly demonstrate the advantage of W2 over L2 and Ḣ−1 in terms of its convexity

property: whileW2
2 is globally convex, L2 and Ḣ

−1 are only convex locally.

In fact, the case of φ(x) = (2π)−d/2e−
1
2 |x|

2
is well-known in the statistics literature [22].

In this case, f and g are Gaussian densities with mean-covariance (λx̄,Σ) and (λgx̄g,Σg)

respectively. TheW2
2 distance between them is simplified to

W2
2 ( f , g) = |λx̄ − λgx̄g|

2 + Tr(Σ+ Σg − 2(Σ1/2
ΣgΣ

1/2)1/2). (35)

This shows that W2
2 ( f , g) is convex with respect to the difference of the mean and variance of

the two Gaussian densities. This fact makes the quadratic Wasserstein metric extremely useful

for inverse matching of Gaussian densities.

5.2. Inverse transport with W2

The simple calculations we just had can turn out to be very useful in solving some inverse

matching problems.

Transport in homogeneous flow. Let us consider the transport of a physical quantity φ in

a given uniform flow v. The evolution of the quantity is modeled by the following transport

equation:

∂ψ

∂t
+ v · ∇ψ = 0, in R+ × R

d , ψ(0, x) = φ(x), in R
d. (36)

It is straightforward to check that the solution to this transport equation at time t = λ is given

as

ψ(λ, x) = φ(x− λv). (37)

For a given function φ, we are interested in finding from the datum g :=φ(x− λgvg) the
unknown flow v and the travel distance λ by matching the predicted datum f with g under

theW2 metric. The result in (31) then shows thatW2
2 ( f , g) is convex with respect to λv. More

precisely,

W2
2 ( f , g) = |λv − λgvg|

2. (38)

Therefore the inversematching problemof determiningλv fromgiven data is a convex problem

under theW2 metric.

Note that since the dependence of W2( f, g) on λ and v is only through the product, we can

generalize our nonlinear model (37) by making the flow more complicated. One example of

14
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such generalization is to make the change

λv→

J∑

j=1

λ jv j,

for any J given flow {v j}
J
j=1. In this case, W2

2 ( f , g) is convex with respect to λ jv j − λg jvg j
(1 � j � J).

Reconstruction from projections. The convexity ofW2
2 with respect to translation of signals

is also useful in recovering locations of objects in high-dimensional space from (possibly ran-

dom and noisy) projections. Let Pjφ be the jth projection of φ on a collection of Kj coordinates

(xk1 , . . . , xkK j ) ∈ RK j , that is,

(P jφ)(xk1 , . . . , xkK j ) :=

∫

R
d−K j

φ(x) dxkK j + 1 · · · dx kd.

We assume that data from J such projections are collected, and that each coordinate in Rd has

been projected onto at least once in the J projections (since otherwise the reconstruction will

be nonunique). Let fj and gj be the jth projections of φ(x − x̄) and φ(x− x̄g) respectively. Then

from (31), we see that the functional

Φ(x̄, x̄g) =

J∑

j=1

W2
2 ( f j, g j) =

J∑

j=1

Π( j)(x̄ j − x̄g j)
2

withΠ( j) the number of times that coordinate xj is included in the J projections (1 � Π( j) � J),

is globally convex with respect to each x̄ j − x̄g j. Therefore, locating an objects from measured

projections is a convex problem in theW2 framework.

5.3. W2-based deconvolution of localized sources

Let us consider the linear matching problem (10) where A is a linear convolution operator

defined as

f (m(x)) ≡ Am(x) :=

∫

Rd

K(x− y)m(y)dy. (39)

This type of operators appear in many areas of applications, such as signal and image process-

ing and optical imaging, where K serves as the model of the point spread function of some

given physical systems [23–27]. The measured signal f can be viewed as output of the system

for the input source m.

In many applications, A is highly smoothing, meaning that its singular values decay very

fast. Inverting A to reconstruct all the information in m is often impossible due to the noise

presented in the data. Here we are interested in reconstructing highly localized sources, that

is, sources that have their total mass supported in a small part of their supports. Point sources

are such sources and are of great importance in many practical applications. In general, let

0 < ε � 1 be given. We introduce

My,ε =

{
m(x) � 0 | ∃Bε(y) ⊆ supp(m) s.t.

∫

Bε(y)

m(x)dx � (1− εd+1)

∫

Rd

m(x)dx

}

where Bε(y) denote the ball of radius ε centered at y. Functions in My,ε have their total mass

concentrated in a ball of radius ε, and are therefore highly localized.

15



Inverse Problems 36 (2020) 055001 B Engquist et al

It is straightforward to show the following result.

Theorem 5.1. Let f and g be generated from (39) with mf and mg respectively. Assume that

mf and mg have the same total mass. (i) For any kernel function K(x) with finite total mass, if

mζ(x) = δ(x− x̄ζ ), ζ ∈ { f , g}

then we have that

W2
2 ( f , g) = |x̄ f − x̄g|

2. (40)

(ii) For any kernel function K(x) ∈ C2(Rd), if mζ ∈ C2(Rd) ∩Mx̄ζ , ε, then

W2
2 ( f , g) = |x̄ f − x̄g|

2
+O(εd+1). (41)

Proof. (i) Follows from the fact that in this setting, ζ(x) :=Amζ(x) = K(x− x̄ζ ), ζ ∈ {f, g},
which is only a translation of K by x̄ζ . To prove (ii), we first observe that inside the Bε(x̄ζ) we

can write

m(y) = m(x̄ζ)+ (y− x̄ζ ) · ∇m(x̄ζ)+O(|y− x̄ζ |
2),

K(x− y) = K(x− x̄ζ)+ (x̄ζ − y) · ∇K(x− x̄ζ)+O(|x̄ζ − y|2).

Therefore we have

ζ(x) =

∫

Rd

K(x− y)m(y)dy =

∫

Bε(x̄ζ )

K(x− y)m(y)dy+O(εd+1)

= m(x̄ζ )K(x− x̄ζ )|Bε(x̄ζ )|+O(εd+1).

This gives that f and g are simply perturbations of the translations of K, which then leads to the

desired result. �

Deconvolution of highly localized sources. The first important consequence of this result,

described in part (i) of the theorem, is that the deconvolution from datum g, with an arbitrary

kernel K, to recover the location of a point source is a convex problem under the W2 metric;

see (40). This is a simple but not obvious observation because once the source is parameter-

ized in terms of the location, the convolution problem becomes nonlinear (with respect to the

location). Part (ii) of the theorem generalizes point source to any highly concentrated sources

by saying that to the leading order, theW2 metric allows us to have a convex objective function

in recovering the location of a highly localized object.

Deconvolution from diffusive environments. One aspect of the result that is surprising is

that it does not require the convolution kernel to take a specific form, for instance, to come

from a physical system governed by the transport phenomenon such as what we described in

the previous subsection. This allows us to study deconvolution with smoothing kernels that

could serve as models for the propagation of the information in m in a diffusive environment.

A kernel of particular importance is the Gaussian kernel

K(x) =
Λd

|ΣK |1/2
e−

1
2
xtΣ−1

K
x, (42)

withΣK ∈ Rd×d symmetric and positive-definite and the constantΛd = (2π)−d/2. For this spe-
cific kernel, we could make the asymptotic calculation in the theoremmore precise. Let us take

16



Inverse Problems 36 (2020) 055001 B Engquist et al

the functionm to be of Gaussian type, as an approximation to the localized source we discussed

in the theorem (when we make the covariance matrix small). More precisely, we take

mζ(x) =
Λd

|Σmζ
|1/2

e
− 1

2 (x−xmζ )
tΣ

−1
mζ

(x−xmζ ), ζ ∈ { f , g}

with Σm f
and Σmg symmetric and positive-definite. Then it is straightforward to verify that f

and g are of the form:

ζ(x) =
Λd

|ΣK +Σmζ
|1/2

e
− 1

2 (x−xmζ )
t (ΣK+Σmζ

)−1(x−xmζ ).

Following (35), we have that

W2
2 ( f , g) = |x f − xg|

2 + Tr(Σ f +Σg − 2(Σ
1/2
f ΣgΣ

1/2
f )1/2),

where Σζ = ΣK +Σmζ
. To mimic the case of localized source, we perform the rescaling

Σm f
→ ε2fΣm f

and Σmg → ε2gΣmg with εf and εg both small (but not necessarily the same).

ThenW2
2 ( f , g) simplifies to

W2
2 ( f , g) = |x f − xg|

2 +
1

2
Tr
(
ΣK(ε

2
fΣ

−1
K Σm f

− ε2gΣ
−1
K Σmg)

t(ε2fΣ
−1
K Σm f

− ε2gΣ
−1
K Σmg )

)

+
3

8
ε4g Tr

(
ΣK(Σ

−1
K Σmg)

t(Σ−1
K Σmg)

)
+O(ε6f + ε6g + ε2f ε

4
g + ε4f ε

2
g).

(43)

Taking the shapes of mf and mg to be the same, that is, Σm f
= Σmg , we see that W2

2 ( f , g) is

convex with respect to both xm f
− xmg and ε2f − ε2g at the leading orders. This fact gives us

the opportunity to deconvolve from Gaussian kernels to reconstruct stably the location and

relative size of localized sources. Note, however, that due to the presence of the trace operator,

W2
2 ( f , g) is less sensitive to the shape (or anisotropy) of the source encoded in its covariance

matrix, compared to the size of the source.

6. Numerical simulations

In this section, we present some numerical simulations to demonstrate some of the main

phenomena that we analyzed in this work. We consider two different inverse data matching

problems.

6.1. Deconvolution under the W2 metric

We first show some simulation results on the deconvolution problem in the one-dimensional

setting. Our numerical simulations can only be done in a finite domain, so we set Ω = [−
, 
].
The forward operator is the convolution on Ω:

f (m(x)) = Am(x) :=

∫ 


−


K(x− y)m(y) dy, (44)

for a kernel K(x) > 0 with finite integral
∫ 2


−2
 K(x)dx = 〈K〉. We assume that the data g is

generated from a true function m∗(x) � 0 such that
∫ 


−
 m
∗(x)dx = 〈m∗〉. This will ensure that
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Figure 4. Deconvolution with a Laplacian kernel with the L2 (left), Ḣ−1 (middle),
and W2 (right) metrics. Top row: deconvolution with noise-free data; Bottom row:
deconvolution with data containing respectively 2%, 10%, and 10% random noise.

∫ 


−
 g(x) dx = 〈K〉〈m∗〉. We will consider inverse matching with both noiseless and noisy data.

In the case of noisy data, we add multiplicative noise to g in a way such that
∫ 


−
 gδ(x) dx =

〈m∗〉.
In figure 4 we show deconvolution results for the Laplacian kernel KL(x) = e−
|x| with the

L2, Ḣ−1 andW2 metrics, that is, using the objective functions ΦH0(m), ΦḢ−1(m) and ΦW2
(m).

This set of results show clearly the smoothing effect of the quadratic Wasserstein metric: in

both the noise-free and noisy data cases,W2 give smoothed out reconstruction compared to its

L2 counterpart. The order of the smoothing is very similar to that of the Ḣ−1 norm, although the

exact reconstructions are quite different. Compared to Ḣ−1, W2 reconstructions seem to have

slightly more variations. Both the Ḣ−1 and the W2 reconstructions can tolerate strong high-

frequency random noise, while the L2 reconstructions break down quickly at the relatively low

noise level. One can certainly add a regularization mechanism to stabilize the L2 reconstruc-

tions here. However, our objective here is not to say that W2 reconstruction is better than L2

reconstruction, but to demonstrate the smoothing effect of the quadratic Wasserstein metric.

Therefore we do not include any explicit regularization to the L2 reconstruction (although our

discretization of the forward problem, the adjoint problem as well as the mismatch between

the forward and adjoint discretization, indeed introduce a regularization effect).

We have done extensive numerical experiments on this problem with data at different noise

levels and different convolution kernels. The same type of smoothing effect are observed in all

the numerical tests with the quadraticWasserstein metic. Interested readers are refer to [28] for

more detailed description of such results. As an example, we show in figure 5 deconvolution

results from the kernel KI(x) =
1

1+|x| .

6.2. Inverse matching for an elliptic PDE problem

The second set of numerical simulations focuses on an inverse coefficient problem for the

diffusion equation. Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω and consider the
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Figure 5. Deconvolution with the kernel KI(x) =
1

1+|x| with the L2 (left), H−1 (mid-

dle), and W2 (right) metrics. Top row: deconvolution with noise-free data; Bottom row:
deconvolution with data containing respectively 2%, 10%, and 10% random noise.

following second-order elliptic partial differential equation with Robin boundary condition:

−∇ · γu(x)+ σ(x)u(x) = 0, in Ω, n · γ∇u(x)+ κu = h(x), on ∂Ω. (45)

Physically this equation can be used to describe the diffuse of particles, generated from source

h(x) � 0, in an absorbing environment, such as propagationof near infra-red photons in biolog-

ical tissues, with γ(x) > 0 and σ(x) > 0 respectively the diffusion and absorption coefficients

of the environment.

For applications in quantitative photoacoustic imaging [29, 30], we are interested in recon-

structing the absorption coefficient σ in the equation (45) from data that we measure in an

experiment of the following form:

f (σ) :=σ(x)u(x), x ∈ Ω (46)

where u(x) is the solution to the diffusion equation. Due to the fact that the diffusion solution

u depends on the unknown σ in a nonlinear way, this inverse problem is nonlinear.

Let us assume thatΩ is smooth, so that the diffusion equation (45) admits a unique solution

that is sufficiently regular when γ, σ and h are sufficiently regular. Moreover, from standard

theory of elliptic partial differential equations [31], we conclude that u is non-negative and

bounded from above when the boundary source h(x) is so. Therefore f(σ) is nonnegative and
bounded from above. We therefore can treat f(σ) as a probability density for a given σ.

We first show in figure 6 some typical inversion results for the problem in the one-

dimensional case where Ω = (0, 1). For simplicity, we set γ = 0.02 in all the simulations we

present here. Our extensive numerical tests show that the exact value of γ has only a negligible

impact on the inversion results. We again observe the smoothing effect of the W2 metric as in

the deconvolution example, and this smoothing effect makes the inversion very robust again

high-frequency random noise in the data. This smoothing effect is independent of the dimen-

sion of the spatial domain, as seen from the analysis in the previous sections of the paper and

observed in two-dimensional inversion results shown in figure 7.
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Figure 6. Inversion for σ inΩ = (0, 1) with noise-free (top row) and noisy data (bottom
row) under the L2 (left), Ḣ−1 (middle) and W2 (right) metrics. The noise level in the
bottom row is 12% for each case.

Figure 7. Inversion for σ in two-dimensional case in the domainΩ = (0, 1)× (0, 1) with
data containing 10% random noise. Shown from left to right are the true coefficient, the
reconstructions with the L2, Ḣ−1 and W2 metrics respectively.

7. Concluding remarks

In this work, we performed analytical and computational studies on the effect of the quadratic

Wasserstein metric in solving linear and nonlinear inverse data matching problems.We demon-

strate, through analysis in the asymptotic regime, that the quadratic Wasserstein metric has a

smoothing effect on the inversion results, that is, at a given noise level, matching results with

W2 is smoother than those with the L2 metric. One can see this smoothing effect at the true

inverse solution or at a local minimizer of the objective function (which could be far away

from the true matching solution) when a numerical minimization approach is used to solve the

matching problem. The order of the smoothing effect is the same as that of the Ḣ−1 metric.

The smoothing effect of the quadratic Wasserstein metric in the non-asymptotic regime

indicates that the landscape of the Wasserstein objective function and that of the L2 objective

function are quite different. In other words, if we solve the inverse matching problems with
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numerical minimization, the trajectory of the minimizing sequence based on the L2 metric and

that based on the Wasserstein metric is different. Even if the two minimization algorithms

start at the same initial guess and converge to the same minimizer, their paths between the

starting point and the final point are different. Finding good ways to precisely characterize the

differences between the landscapes of the two minimization problems will be the subject of

future works.

Even though the smoothing effect of W2 is very similar to that of the Ḣ−1 metric, we

showed, through analyzing some simple finite-dimensional inverse matching problems, such

as the deconvolution of point sources from given kernels, that W2 has better convexity than

Ḣ−1 and the L2 norm in the non-asymptotic regime. Characterizing such advantages in more

practically useful situations would be an interesting project.

The quadratic Wasserstein metric we studied in this paper requires that the two data to

be compared, f and g, be both probability measures (and therefore be nonnegative) and they

have the same total mass. This requirement severely limits the applicability of the Wasser-

stein metric to more general data matching problems. To use the Wasserstein metrics for data

that are not nonnegative, for instance in data matching for seismic imaging applications [5,

6, 10, 11, 13–15], one can perform some rescaling on the data to make them nonnegative.

It seems, at least on the computational level, that the main features of the Wasserstein met-

rics are preserved by reasonable rescaling strategies such as f �→ α+ βf and f �→ eβf (α and

β being appropriately chosen constants). There have been also attempts to generalize the

original optimal transport framework to deal with signed data [32, 33], although these have

remainedmostly on the theoretical level so far, except in [34] where a strategy for dealing with

non-positive data is proposed and applied to the seismic imaging problem. To compare two

nonnegative signals that do not have the same total mass, one can either use a normalization

procedure, for instance by dividing the signals with their respective total mass so that they both

have total mass 1 (e.g. [5, 11, 14, 15]), or consider generalized Wasserstein distances induced

by unbalanced optimal transport. In terms of the later, the Wasserstein–Fisher–Rao metric

[35, 36] has been studied extensively in the literature. Analyzing the behavior of the quadratic

Wasserstein metric in the aforementioned more complicated setups is an interesting topic for

future research.
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