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ABSTRACT

Full-waveform inversion has evolved into a powerful
computational tool in seismic imaging. New misfit functions
for matching simulated and measured data have recently
been introduced to avoid the traditional lack of convergence
due to cycle skipping. We have introduced the Wasserstein
distance from optimal transport for computing the misfit,
and several groups are currently further developing this tech-
nique. We evaluate three essential observations of this new
metric with implication for future development. One is the
discovery that trace-by-trace comparison with the quadratic
Wasserstein metric works remarkably well together with
the adjoint-state method. Another is the close connection be-
tween optimal transport-based misfits and integrated tech-
niques with normalization as, for example, the normalized
integration method. Finally, we study the convexity with
respect to selected model parameters for different normaliza-
tions and remark on the effect of normalization on the con-
vergence of the adjoint-state method.

INTRODUCTION

Full-waveform inversion (FWI) is a data-driven method in seismol-
ogy to obtain high-resolution subsurface properties by minimizing the
difference between observed and synthetic seismic waveforms (Vir-
ieux et al., 2017). In the past three decades, the least-squares norm
(L2) has been widely used as a misfit function (Tarantola and Valette,
1982; Lailly, 1983), which is known to suffer from cycle-skipping
issues with local minimum trapping and sensitivity to noise (Symes,
2008; Virieux and Operto, 2009). Other misfit functions proposed in
literature (Brossier et al., 2010; Bozdag et al., 2011), include the
Huber norm (Ha et al., 2009), filter-based misfit functions (Warner
and Guasch, 2014; Zhu and Fomel, 2016), seismic envelop inversion

(Luo and Wu, 2015), etc. The lower frequency components have a
wider basin of attraction with the least-squares norm as the misfit
function. Several hierarchical methods that invert from low frequen-
cies to higher frequencies have been proposed in literature to mitigate
the cycle skipping of the inverse problem (Kolb et al., 1986; Pratt and
Worthington, 1990; Bunks et al., 1995; Weglein et al., 2003; Sirgue
and Pratt, 2004).
A recently introduced class of misfit functions is optimal trans-

port related (Engquist and Froese, 2014; Engquist et al., 2016;
Métivier et al., 2016a, 2016b; Yang et al., 2016). As useful tools from
the theory of optimal transport, the quadratic Wasserstein metric (W2)
computes the minimal cost of rearranging one distribution into another
with a quadratic cost function, and the 1-Wasserstein metric (W1) us-
ing the absolute value cost function. Although the L2 misfit function
measures the difference in amplitude locally, the optimal transport-
based methods compare the observed and simulated data globally
and thus include phase information. Researchers started to combine
these two parts in velocity analysis a long time ago. The differential
semblance optimization (Symes and Carazzone, 1991) exploits the
phase and amplitude information of the reflections. Tomographic
FWI (Biondi and Almomin, 2012) also has the global convergence
characteristics of wave-equation migration velocity analysis.
The filter-based techniques are also of a global nature. First, a filter

is designed to minimize the L2 difference between the filtered simu-
lated data and the observed data. The misfit is then a measure of how
much the filter deviates from the identity. As we will see in the W2

technique, this is done in one step in which the optimal map directly
determines the mapping of the simulated data. The mapping inW2 is
general and does not need to have the form of a convolution filter.
In this paper, we will also discuss the integral wavefields misfit

functional (Huang et al., 2014) and the normalized integration
method (NIM) (Liu et al., 2012). If we consider that the data are
properly rescaled, the misfit of NIM is the norm of Sobolev space
H−1 in mathematics. The connection between W2 and H−1 is not
obvious from the optimal transport definition, but it is clear from its
equivalent formulation and the 1D closed solution formula. We
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shall also see that this is valid in higher dimensions even if there is
no explicit solution formula.

THEORY

FWI is a PDE-constrained optimization problem, minimizing the
data misfit dðf; gÞ by updating the model parameter m, i.e.,

m⋆ ¼ argmin
m

dðfðxr; t;mÞ; gðxr; tÞÞ; (1)

where g is the observed data, f is the simulated data, xr are the
receiver locations, and m is the model parameter. We get the mod-
eled data fðx; t;mÞ by solving a wave equation numerically in the
space and time domain.
The generalized least-squares functional is a weighted sum of the

squared errors and hence a generalized version of the standard least-
squares misfit function. The formulation is

J1ðmÞ ¼
X
r

Z
jWðfðxr; t;mÞÞ −Wðgðxr; tÞÞj2dt; (2)

where W is an operator. In the conventional L2 misfit, W ¼ I, the
identity operator.
The integral wavefields misfit functional is a generalized least-

squares functional applied on FWI with weighting operator WðuÞ ¼
∫ t
0uðx; τÞdτ. The objective function is defined as

J2ðmÞ¼
X
r

Z ����
Z

t

0

fðxr;τ;mÞdτ−
Z

t

0

gðxr;τÞdτ
����
2

dt: (3)

NIM is another generalized least-squares functional, similar to
the integral wavefield misfit functional.
The difference from equation 3 is that NIM first makes data pos-

itive before the integration. The objective function is

J3ðmÞ ¼
X
r

Z
jQðfðxr; t;mÞÞ −Qðgðxr; tÞÞj2dt; (4)

where Q is the transformation of the wavefield u, defined as

QðuÞðxr; tÞ ¼
R
t
0 NðuÞðxr; τÞdτR
T
0 NðuÞðxr; τÞdτ

: (5)

The operator N is included to make the data nonnegative. Three
common choices are N1ðuÞ ¼ juj, N2ðuÞ ¼ u2, and N3 ¼ EðuÞ,
which correspond to the absolute value, the square, and the envelope
of the signal (Liu et al., 2012).
Despite the fact that both methods are measuring the L2 misfit,

there are three different features in NIM compared with conventional
FWI. Data sets are normalized to be nonnegative, mass balanced, and
integrated in time. The first two are exactly the prerequisite of optimal
transport-based misfit functions, i.e., the Wasserstein metrics.
Optimal transport refers to the problem of seeking the minimal

cost required to transport mass of one distribution into another given
a cost function, e.g., jx − yjp. The mathematical definition of the
distance between the distributions f∶X → Rþ and g∶Y → Rþ can
then be formulated as

Wp
pðf; gÞ ¼ inf

Tf;g∈M

Z
X
jx − Tf;gðxÞjpfðxÞdx; (6)

where p is typically one or two, M is the set of all maps Tf;g that
rearrange the distribution f into g (Villani, 2003).
The optimal transport formulation requires nonnegative distribu-

tions and equal total masses, ∫ fðxÞdx ¼ ∫ gðxÞdx, which are not
natural for seismic signals. Therefore, proper data normalization
is required before inversion. Data sets f and g can be rescaled
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Figure 1. The shaded areas represent the mismatch each misfit
function considers. (a) L2: ∫ ðf − gÞ2dt. (b) Integral wavefield
method: ∫ ð∫ f − ∫ gÞ2dt. After data normalization, (c) NIM mea-
sures ∫ ðF −GÞ2dt, whereas W2 considers ∫ ðF−1 −G−1Þ2dt and
W1 considers ∫ jF−1 −G−1jdt.
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to be nonnegative with values in the range ½0; 1�, and to have equal
mass. This step is the same as the one in equation 5 in NIM.
In Yang et al. (2016), two ways of using W2 in FWI were pro-

posed. One can either compute the misfit globally by solving a 2D
optimal transport problem or compare data trace-by-trace with the
1D explicit formula. Here, we mainly focus on the 1D technique:

J4ðmÞ ¼
XR
r¼1

W2
2ðfðxr; t;mÞ; gðxr; tÞÞ; (7)

where R is the total number of traces. Mathematically, it is the W2

metric in the time domain and the L2 norm in the spatial domain.

PROPERTIES

Next, we discuss integration and positivity, two important fea-
tures of optimal transport by comparing the misfit functions men-
tioned above. We will regard f and g as the synthetic and observed
data from one single trace as a 1D problem.

Relations among misfit functions

Conventional FWI measures the L2 norm difference
∫ jfðtÞ − gðtÞj2dt, indicated by the shaded part in Figure 1a. The
integral wavefield misfit functional first integrate f and g in time,
and then it measures their L2 misfit (equation 3). The integrated
wavefields have the higher frequencies reduced compared with the
lower ones. The reduced higher frequency components (in Fig-
ure 1b) can properly explain the improvement in inversion (Huang

et al., 2014). It also motivates searching for new normalization func-
tions that have better convexity properties.
With a proper normalization method, it is possible to scale the

data to have nonnegativity and mass balance. This step is essential
for NIM and W2. We are able to solve the 1D optimal transport
problem exactly, and the optimal map is the unique monotone rear-
rangement of the density f into g (Villani, 2003). To compute the
quadratic Wasserstein metric, we need the cumulative distribution
functions FðtÞ ¼ ∫ t

0fðτÞdτ and GðtÞ ¼ ∫ t
0gðτÞdτ and their inverses

F−1 and G−1. The explicit formula for the 1D Wasserstein metric
is Wp

pðf; gÞ ¼ ∫ 1
0jF−1ðxÞ −G−1ðxÞjpdx.

The interesting fact is that W2 computes the L2 misfit between
F−1 and G−1 (Figure 1c), whereas the objective function of NIM
measures the L2 misfit between F and G, i.e., ∫ T

0 jFðtÞ −GðtÞj2dt
(Figure 1c). The latter is identical to the mathematical norm of the
Sobolev space H−1, kf − gk2H−1 , given f and g are nonnegative and
sharing equal mass.
The adjoint source of the integral wavefield misfit functional

as well as some earlier works enhances the low frequency already
present in the data. The Fréchet derivative of trace-by-trace W2

has a lower frequency outside the data bandwidth especially when
f and g are far apart. This is because optimal transport considers not
only amplitude differences but also phase shifts (generating low
frequencies in the adjoint source). The envelope inversion (Luo
and Wu, 2015) has a similar property. Once the cycle-skipping prob-
lem is solved and the observed and simulated data are close, the W2

norm is more similar to the point-by-point misfit functions such as L1

and L2.
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Figure 2. The misfit between fðxÞ and fðx − sÞ by six different misfit functions. The first row shows conventional L2 (left), integral wavefield
method (middle) and NIM with PðfÞ ¼ f2 (right). The second row shows the W2 misfit with different normalization methods: PðfÞ ¼ f2
(left), a · f þ b (middle) and expðc · fÞ (right).
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Mathematical connection between H−1 norm and W2
norm

In the general case, f and g are the synthetic and observed data in
higher dimensions, satisfying nonnegativity and conservation of
mass. To compute the quadratic Wasserstein metric, we solve the
following Monge-Ampère equation (Brenier, 1991):

detðD2uðxÞÞ ¼ fðxÞ∕gð∇uðxÞÞ: (8)

If f and g are close enough and g ¼ ð1þ ϵhþOðϵ2ÞÞf, where
∫ hðxÞfðxÞdx ¼ 0, we can linearize (equation 8) and also derive

an approximation of the quadratic Wasserstein metric between f
and g as a weighted H−1 norm (Villani, 2003, 126–127).
The dynamical characterization of the Wasserstein metric pro-

posed by Benamou and Brenier (2000) gives insights to consider
that H−1 and W2 belong to the same class of measures. One can
refer to Dolbeault et al. (2009) for more theoretical details. The ad-
joint sources are, however, different for W2 and NIM.

How to normalize the data: Convexity versus
convergence

As demonstrated by Engquist et al. (2016), the squared Wasser-
stein metric has several properties that make it attractive as a choice
of misfit function. One highly desirable feature is its convexity with
respect to several parameterizations. However, the convexity of W2

highly depends on the data normalization method to satisfy positiv-
ity and mass balance.
The curves in the second row of Figure 2 are the squared W2 dis-

tance with different scaling functions: P1ðfÞ¼f2, P2ðfÞ¼a ·fþb,
and P3ðfÞ ¼ expðc · fÞ.
Theoretically, P1 gives perfect convexity with respect to simple

shifts but in most large-scale simulations with adjoint-state method
P2 has much better convergence properties. From Taylor expansion
we can see that P3 is very close to P2 when c is small. Because P2

and P3 are similar also in larger scale FWI we have chosen to focus
on the simpler P2 in this paper. There are some reasons for P2 to be
successful even if Figure 2 indicates differently. One is that the sit-
uation in higher dimension is different.
The most important one is that optimal transport with linear nor-

malization does not distort the shared events in data sets. It would
also map the missing events in the synthetic data accurately if seis-
mic data have mean-zero property.

NUMERICAL EXAMPLE

In this section, we use a part of the BP 2004 benchmark velocity
model (Billette and Brandsberg-Dahl, 2005) (Figure 3a) and a
highly smoothed initial model without the upper salt part (Figure 3b)
to do inversion with W2 and L2 norm, respectively. A fixed-spread
surface acquisition is used, involving 11 shots located every 1.6 km
on top. A Ricker wavelet centered on 5 Hz is used to generate the
synthetic data with a band-pass filter only keeping the 3–9 Hz com-
ponents. We stopped the inversion after 300 L-BFGS iterations.
For W2 we normalized the data with function p2ðfÞ ¼ a · f þ b

to satisfy the nonnegativity and mass balance in optimal transport.
Inversion with a trace-by-trace W2 norm successfully constructed
the shape of the salt bodies (Figure 3d), whereas FWI with the con-
ventional L2 failed to recover boundaries of the salt bodies as shown
in Figure 3c.
Next, we repeat the previous experiment in a more realistic setting

by adding correlated noise to the original observed data (Figure 4a).
At each time grid, the noise ~rðjÞ ¼ 0.25 ⋅ ðrðj − 1Þ þ 2rðjÞ
þ rðjþ 1ÞÞ ⋅ ð1þ ðgðjÞÞ∕ðkgk∞ÞÞ, where r is the mean-zero uni-
form iid noise and g is the clean observed data. The S/N is 5.98 dB.
After 185 iterations, the optimization converges to a velocity pre-

sented in Figure 4b. Compared with Figure 3d, the result has lower
accuracy around the salt bottom due to the strong noise added in the
target data (Figure 4a). However, we still can recover the salt body
and upper boundaries reasonably well compared with Figure 3c
when L2 norm hardly generate meaningful results even with the
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Figure 3. (a) True model velocity, (b) initial velocity, (c) inversion
result using L2, and (d) inversion result using trace-by-trace W2
with normalization P2ðfÞ ¼ af þ b.
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clean observed data. The W2 robustness to noise comes from can-
cellation locally (Engquist et al., 2016). This advantage is naturally
reduced for signals highly correlated in time in the trace-by-trace
technique.

CONCLUSION

In this paper, we mainly analyze the properties of trace-by-trace
W2 as a misfit function in FWI, which proved to be very successful
in mitigating cycle skipping. Other misfit functions are considered
for comparison. The W2, the integral wavefields misfit functional
and NIM in different ways incorporate the idea of integration. By
itself, this cannot avoid local minima coming from the oscillatory
data. One solution to reduce the risk of cycle skipping is to combine
the integration with normalizing the signals to be nonnegative. This
can “break” the periodicity.
The NIM and the quadratic Wasserstein metric include these

ideas as essential steps and their convexity in the data domain and
model domain become better. We have seen that the choice of nor-
malization plays a significant role in convexity and convergence.
The relation is not simple and needs to be further analyzed, which
is seen from the examples of the successful linear normalization
compared to squaring of the signals. The analysis of these misfit
functions of FWI brings additional insights into the importance
of seismic data preconditioning, which also can be seen in examples
of large-scale FWI.
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Figure 4. (a) Noisy and clean data of one trace and (b) inversion
result with noisy target data.
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