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Abstract—Due to the Ising model’s strong expressivity and
Ising machines’ unique computational power, it is highly desired
if Ising-based learning can be used in real-world applications.
Unfortunately, the challenges in learning the Ising model and
gaps between the practical accuracy of Ising machines and the
theoretical accuracy of the Ising model impede the realization of
Ising machines’ potential. Hence, we propose an Ising Machine
Learning framework, Ising-CF, for collaborative filtering, a
widely-used recommendation method. Specifically, Ising-CF uses
Linear Neural Networks with Besag’s pseudo-likelihood and
voltage polarization for fast, accurate Ising model learning and an
Ising-specific logarithmic quantization for ns-level Ising machine
inference with near-theoretical accuracy, 7.3% over SOTA.

Index Terms—Ising Machine, Ising Model, Collaborative Fil-
tering, Machine Learning

I. INTRODUCTION

Collaborative Filtering (CF) is an increasingly critical tech-
nique of information filtering in this information explosion era
and is playing a dominant role as a recommender in big data
applications. After decades of development, CF techniques
have been developed from latent linear models to complex
deep non-linear models, sparking huge interest in both industry
and academia. Amazon, YouTube, iTunes, Microsoft, and Net-
flix all use CF for commercial recommendations; Physicians
use CF for drug recommendation, and Chemists use CF for
chemical reactant recommendation [1].

Despite continuous efforts on the development of CF, there
is, unfortunately, still no significant performance improvement
in the past decade. As Fig. 1 shows, the recalls of current
SOTA CFs are still around the ones 14 years ago, with massive
space for improvement. Moreover, real-time CF recommen-
dation is another challenge since almost all SOTA solutions
are based on Matrix Multiplication in digital systems, which
strictly bound the theoretical minimum latency far exceeding
many real-world demands.

The stagnation of the development of CF is mainly due to
the lack of information on users and items, making it hard
to improve accuracy by simply increasing the model’s com-
plexity. Specifically, unlike other recommendation methods
(e.g., META’s DLRM), which work with adequate information,
CF typically needs to learn highly sophisticated correlations
among objects from very limited information [1]. Therefore,
an efficient CF demands highly flexible logic interconnects
among all users and items to enable both accurate and fast
cascading passes of the limited user-item interplay information

Fig. 1. Recall (%) of SOTA CFs with Movielens-100K in the past decade.

Fig. 2. Analog circuit and energy landscape of BRIM Ising machine.

where traditional methods applied to digital systems fall short.
New CF methods are highly desired.

To this end, we investigate the potential of the Ising model
and the Ising machine as the key to future CF for follow-
ing reasons. (1) Ising models’ strong expressivity: the Ising
model is a probabilistic graphical model rooted in statistical
physics (of magnetism) that has been widely used to describe
complex systems. Ising models use complete graphs to embed
the correlations among systems’ objects providing strong
connectivity, expressivity, and unique long-range cascading
propagation of information. Solving the Ising model is to find
the low-energy modes of systems’ energy landscapes. (2) Ising
machines’ computation with “speed of electrons”: Recently
developed Ising machines (e.g. BRIM [2]) automatically and
quickly find lowest-energy states via physics-based dynamical
systems that naturally seek those states (e.g., via charging
and discharging of nano-scale capacitors as shown in Fig. 2)
much faster and more efficiently than can be done by the
state-of-the-art, physics-inspired algorithm using traditional
von Neumann computing. It has been shown that an mW-level
CMOS-based BRIM solves properly formulated NP-complete
optimization problems with orders of magnitude speedups over
traditional processors. These observations suggest that if CF
can be formulated as the Ising model with precisely learned
parameters so that the low-energy states represent correct
recommendations, the resulting Ising-based CF approach will
enjoy both high expressivity from the Ising model and high
performance from Ising machines.

Despite the above promising potential of Ising model-based
approaches, real-world adoption of the Ising model and Ising
machines come with prohibitive challenges. First, it is hard
to construct the Ising model with precise parameters trained
from historical data. On the one hand, globally optimizing
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Fig. 3. An overview of the proposed Ising-CF framework including Inverse-Ising learning (left) and Forward-Ising inference (right).

n2 parameters of the Ising model during training is infeasible
with a large model size n. In comparison, local optimization
of parameters reduces Ising models’ expressivity but makes
training easier. On the other hand, the exact maximum likeli-
hood estimation for constructing the Ising model is intractable
as exact gradient computation takes exponential time in n.
Second, for the applications with significantly unbalanced
positive and negative samples (e.g., 0.01% recommendation
rate in CF), the positive voltages carried by the capacitors rep-
resenting the items for recommendation are normally clustered
around 0 volt, blurring the boundary of “like” and “dislike”
and leading to accuracy degradation. Third, the physical Ising
machines only support limited precision (e.g., 8 bits) of
coupling strengths, resulting in the same limited choices of
coupling parameters, which can cause accuracy gaps between
theory and practice.

To address these challenges and unleash the potential of the
Ising model, we propose an Ising Machine Learning frame-
work (shown in Fig. 3), Ising-CF, taking CF as a case study. In
particular, Ising-CF consists of two stages, Inverse-Ising learn-
ing and Forward-Ising inference. (1) Inverse-Ising learning
formulates CF as the Ising model with precisely learned Ising
parameters (J), creating energy landscapes where the local
minima represent recommendations for different users. For
accurate and fast training, Inverse-Ising uses symmetric linear
neural networks to provide efficient global optimization of
Ising parameters and Besag’s pseudo-likelihood with voltage
polarization to enlarge the voltage differences between rec-
ommendation and non-recommendation items with simplified
gradient computation. (2) Forward-Ising inference maps the
Ising model trained in (1) onto an Ising machine for inference
and is equipped with an Ising-specific logarithmic quantization
that better matches the distribution of the Ising parameters,
further closing accuracy gaps between the theoretical Ising
model obtained during training and the practical Ising model
run on Ising machines. To the best of our knowledge, Ising-
CF is the first work to use Ising methods to outperform SOTA
solutions in the real world. Our contributions are as follows:

• We propose an Ising Machine Learning framework for
CF, Ising-CF, a path-breaking recommendation method
that realizes Ising methods’ potential in the real world.

• We propose a novel Inverse-Ising learning method
equipped with Linear Neural Network, pseudo-likelihood,
and voltage polarization to fast and accurately construct

the Ising model that matches real-world problems.
• We propose an Ising-specific logarithmic quantization

technique that enables lossless theoretical Ising model
mapping to practical Ising machines.

• Experiments show that Ising-CF provides, on average
8186× speedup & 7.3% recall improvement over 6 care-
fully selected SOTA solutions with 4 real-world datasets.

II. BACKGROUND AND RELATED WORK

A. Ising Model and Ising Machine
The Ising model is typically shown as a graph with two-state

spins as nodes and couplings among spins as edges. Given n
spins in the system, the phase space s = {σi}ni=1 ∈ {±1}n is
governed by the Hamiltonian (or the energy function) H(s),
forming an energy landscape throughout the entire phase
space. Specifically, the energy function (Eq. 1) is composited
by a real-valued coupling matrix J ≡ {Jij}ni,j=1, describing
the topology of the graph and the interaction strength of
neighboring spins, and a vector h ≡ {hi}ni=1 representing the
reaction of each spin to an external field. Both J and h are
Ising model parameters obtained during Inverse-Ising learning.

H =
∑
i<j

Jijσiσj + µ
∑
i

hiσi. (1)

An Ising machine is a physical implementation of the Ising
model, which naturally tends to evolve towards the state
s = {σ1, . . . , σn} with lower energy H(s). Therefore an
Ising machine acts as an effective solver to an optimization
problem in the Ising formulation. Many hardware prototypes
or concepts of Ising machines have been developed, includ-
ing D-Wave’s quantum annealers, Coherent Ising Machines,
Electronic Oscillator-based Ising Machines, and the recently
proposed efficient CMOS-compatible BRIM [2]. In this paper,
we use BRIM as a substrate for Ising-CF in Forward-Ising
inference . More details can be found in [2, 3].

B. Related Work
Collaborative filtering methods: One-class collaborative fil-

tering has been a hot topic recently, and numerous methods
have been proposed. Classical neighborhood-based approaches
are based on item-item (user-user) similarity matrices. Matrix
factorization methods are further proposed by decomposing
the rating matrix, e.g., WRMF, WAPR-MF [4]. Recently, vari-
ational autoencoders have been utilized to solve collaborative
filtering and have become SOTA methods, e.g., FastVae [5].
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Fig. 4. Overview of Inverse-Ising learning (left) and illustration of 3 methods for coupling matrix decomposition including (a) NPA, (b) SVD, (c) SLNN.

Ising-based methods: The Ising machines have been in-
creasingly popular in solving many optimization problems.
[6, 7] uses a fully-connected Ising machine to solve traveling
salesman problems. [2, 3] uses the Ising machine to solve
graph cut problems. However, the potential of Ising machines
in real-world applications has not been demonstrated before.

III. METHODOLOGY

A. Problem Definition and Framework Overview
As one of the most important techniques in recommendation

systems, CF aims to recommend items to users with potential
interests according to historical user preference (e.g., likes
& dislikes). We use U and I to denote the set of all users
and all items, respectively, with m = |U| and n = |I|. Let
S = (s1, . . . , su, . . . , sm) denote the observation of user-item
interactions of m users where the vector su = (σu,i, . . . , σu,n)
represents the user u’s interaction with n items. For each user’s
observation (su), the Boltzmann distribution can be used to
determine its likelihood:

P (su) =
1

Z
exp

∑
i<j

Jijσu,iσu,j +
∑
i

hiσu,i

, (2)

where Z is the partition function, Jij represents the cor-
relations of item i & j in recommendation, hi represents
the recommendation bias of item i, and σu,i represents the
interaction between user u and item i with σu,i = 1 or
-1 representing “like” or “dislike” respectively. Let O =
{(u, i)|σu,i ∈ {1,−1}} be a set of observed user-item interac-
tions and Ô = {(u, i)|σu,i} be the set of unobserved user-item
interests. The goal of CF is to predict the status of σu,i in Ô
given the observed interaction history in O.

We map the CF problem above onto an Ising model to
employ the Ising machine in user-item recommendations.
Specifically, we use spins of the Ising model to represent
items and find shared Ising parameters (Jij , hi) that describe
item correlations for the recommendation. We then construct
a shared Ising model that applies to all users. To generate
recommendations for a particular user, we fix the spins (items)
whose interactions with this user are observed. These spins
form a restricted region with an energy landscape, and we then
employ Ising machines to find the lowest energy state in the
space automatically. The spin configurations (lowest energy
states) found by an Ising machine are the recommendations for
this user. Different users have different observed interactions,
so their recommendation results are located at different local
minima of the shared landscape.

Ising-CF is a framework that can efficiently and accurately
construct the shared Ising model through Inverse-Ising learn-
ing (S.III.B) and perform ultra-fast recommendation through
Forward-Ising inference (S.III.C) using the Ising machine.

B. Inverse-Ising Learning

At the heart of many approaches to reconstructing the Ising
model is the maximum likelihood framework. As mentioned
above, S = (s1, . . . , su, . . . , sm) follows the Boltzmann dis-
tribution of the Ising model and the observation su for user u
corresponds to one sample drawn from this distribution. The
so-called maximum likelihood estimator is as follows:

{Jij , hi}ML
= argmaxJij ,hi

P (s1, s2, ..., sm|Jij , hi), (3)
where P is given in (2) and 1 ≤ i, j ≤ n. Hence, the goal
of Inverse-Ising learning is to learn J (ignoring h for clarity)
effectively from the observed data. To meet this goal, we use
interconnection coupling matrix decomposition and Besag’s
pseudo-likelihood approximation.

1) Interconnection Coupling Matrix Decomposition
It is intractable to optimize n2 parameters in J simultane-

ously considering the huge numbers of items (n) in real-world
applications. We first investigate the neighborhood pursuit and
singular value decomposition methods to reduce the size of the
optimization problem to tackle this challenge.

(a) Neighborhood Pursuit Algorithm (NPA): The node-
wise ℓ1-regularized logistic regression approach, called neigh-
borhood pursuit [8], can be used to estimate the Ising model.
As Fig. 4 shows, its key idea is to break a whole Ising
model into many sub-models. According to the pair-wise
Markov property, an interaction σu,i of user u with item i
only depends on its neighbors σu,\i. Thus, each of the n
items is taken in turn as the dependent variable against the
remaining items. The coupling interconnections for interaction
i correspond to the vector Ji,. = (Ji,j ,∀j ∈ I\i). Under this
assumption, the estimation of the coefficient vector Ji,. for
item i is finally accomplished by addressing the following ℓ1-
regularized logistic regression problem:

Ĵi,. = argmax
1

m

m∑
u=1

n∑
i=1

log l(σi ∈ I\i, Ĵi,.) + λ∥Ĵi,.∥1, (4)

where l is a logistic function. Hence, learning the coupling
matrix J is feasible via a row-wise training strategy. However,
NPA breaks the global connection of the Ising model where
the high expressivity of the Ising model comes from, resulting
in poor accuracy in real-world problems.

(b) Singular Value Decomposition (SVD): SVD is a
widely-used matrix factorization method that enables low-rank
approximation. For the Ising model, the coupling matrix J that
is required to be symmetric due to Ising machines’ architecture
can be approximated by its truncated SVD: J ≈ XkΣX

T
k ,

where Xk is an n × k orthogonal matrix and Σ is a k × k
diagonal matrix whose elements are the singular values in
decreasing order. The matrix J can also be approximated using
the sum of the multiplication of the left and right singular
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Fig. 5. Illustration of the Ising-voltage polarization.

vectors with large singular values (see Fig. 4 (b)). That is,

J ≈
k∑

i=1

eix
T
i xi = e1x

T
1 x1 + ...+ ekx

T
k xk, (5)

where {xi} are column vectors of Xk. Although SVD can
offer a low-rank parameterization of J , it still has three main
shortcomings. First, not all real-world applications have low-
rank features. Second, no prior knowledge is given about
singular vectors for real-world applications. Finally, the SVD
representation of J imposes extra constraints requiring matri-
ces Xk and Σ to be orthogonal and diagonal respectively.

(c) Symmetric Linear Neural Network (SLNN): To address
the problems of the previous two methods, we propose to
use SLNNs to decompose and parameterize J , considering
that the Hamiltonian of the Ising model is a linear map
of spin configurations. In the SLNN, the dimension of the
input and output layers are equal to the number of items
(n) and the output is a linear transformation of the input
spin configurations. The symmetry of the LNN guarantees
matrix J to be symmetric meeting the requirement of Ising
Machines. As Fig. 4 shows, J can be represented using the
weight matrices of SLNNs:

J =

L∏
l=1

Wl, (6)

where L is the number of layers and Wl is the weight matrix
at the l-th layer. Compared with other methods, SLNN has the
following strengths. First, it is a joint learning strategy without
breaking the global interconnections of the Ising model, thus
achieving higher accuracy. Second, unlike SVD, elements in
J learned with SLNN can take any real values, which brings
higher flexibility to the Ising model construction. Finally,
SLNNs lead to faster Inverse-Ising learning by significantly
reducing parameter dimensions.

2) Besag’s Pseudo-Likelihood
After parameterizing J using SLNNs, we now apply max-

imum likelihood to learn the Ising model. The log-likelihood
of the model parameters given the observed data S is

LS(J) =
1

m

m∑
u=1

logP (su|J)

= {
∑
i<j

Jij ⟨σu,iσu,j⟩+
∑
i

Jii ⟨σu,i⟩ − logZ(J)},
(7)

where Z(J) is the partition function. To apply the gradient
descent optimization, we compute the gradients as follows:

∂LS(J)

∂Jij
= ⟨σu,iσu,j⟩S − ⟨σu,iσuj⟩M , i ̸= j, (8)

∂LS(J)

∂Jii
= ⟨σu,i⟩S − ⟨σu,i⟩M , (9)

where ⟨·⟩S and ⟨·⟩M are known as data-dependent and model-
dependent expectations, respectively. To calculate these ex-

Fig. 6. Energy landscape and Ising-specific logarithmic quantization.

pectation values, one has to calculate the average of 2n

configurations, which is only feasible for ultra-small systems.
Many approaches, e.g., MCMC and Gibbs samplings, have
been applied to approximate this expectation, but they are
still too expensive. To avoid these sampling steps in train-
ing, we use Besag’s log pseudo-likelihood to approximate
the loss function instead, which also yields asymptotically
consistent estimates. The log pseudo-likelihood is defined
as the sum of the conditional log-likelihoods of the items:
L(S|J) =

∑m
u=1

∑n
i=1 log p(σu,i|I\i; J), where the condi-

tional log-likelihood is derived as:

p(σu,i|I\i; J) =
exp

(
2σu,i

∑
j∈I\i

Jijσu,j + Jiiσu,i

)
exp

(
2σu,i

∑
j∈I\i

Jijσu,j + Jiiσu,i

)
+ 1

. (10)

By adopting Besag’s pseudo-likelihood, our Inverse-Ising
learning can avoid computationally expensive sampling-based
gradient approximation and provide a tractable gradient cal-
culation that achieves consistent parameter estimation.

3) Ising-Voltage Polarization
As mentioned in Section I, an Ising machine uses capacitors

to represent spins (items) in the Ising model (CF) and uses the
voltage values carried by capacitors to make recommendations.
Specifically, items with voltage from 0 to +Vdd are predicted
as “like”, while the ones from −Vdd to 0 are regarded as
“dislike”. With the Ising model trained with standard log-
pseudo-likelihood, most of the spins that should have positive
voltages end up with small voltages clustered around 0 volt,
blurring the differences between “like” and “dislike” and
further leading to low accuracy. To this end, we propose
Ising-voltage polarization, which pushes the positive voltages
on spins that should be recommended towards +Vdd and
the negative ones down to −Vdd, better at differentiating
“like” and “dislike” and ensuring the positive items can be
recognized. Specifically, we augment log pseudo-likelihood
to train the model with extra attention on the likelihood of
positive interactions. Let ri be the polarization factor for item
i, and the new log pseudo-likelihood can be formulated as:

L =
∑

(u,i)∈O−

log p(σu,i|I\i; J)+ri
∑

(u,i)∈O+

log p(σu,i|I\i; J), (11)

where O+ and O− are sets of positive and negative user-item
interactions respectively. By increasing ri, voltages of more
items will be pulled up closer to +Vdd and flipped to “+1”,
providing the support of adjustable recommendation rates.

C. Forward-Ising Inference

Forward-Ising inference is to map J matrix to the resistor
network on an Ising machine, perform annealing with an Ising
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machine, and read out spin states as recommendations. As the
last two steps are automatically handled by BRIM [3], this
section mainly discusses how to map the Ising model onto
an Ising machine losslessly with the proposed Ising-specific
logarithmic data format.
1) Ising-Specific Logarithmic Format (ILF)

To perform forward Ising inference on an Ising machine,
we need to map theoretical values of elements in J learnt in
Inverse-Ising learning to practical values of resistors on Ising
machines. Unfortunately, due to the manufacturing limitations,
real Ising machines can only be programmed with very limited
numbers of resistor values (e.g., BRIMs only support 8-bit
resistor values), making it hard to achieve high practical accu-
racy on the Ising machine with existing data formats. Specif-
ically, Ising models learnt with high-precision data formats
(e.g., Floating-Point/Fixed-Point 64/32) have high theoretical
accuracy, however, the elements of their J matrices that use
massive different values need to be mapped onto hundreds
of resistor values, inevitably leading to unacceptable accuracy
degradation. As for the models learnt with low-precision
formats (e.g., fixed-point/integer 8/4), their J matrices have
the potential to be accurately mapped onto resistors, however,
the local minima of the energy landscape constructed with the
low-precision J fail to represent the correct recommendation.
To enable high accuracy on Ising machines, new Ising-specific
data formats are required.

We observe that the practical accuracy of the Ising model
is determined by how accurate the local minima of its energy
landscape are. In another word, the Region of Interest (ROI) of
the Ising model construction is at the low energy states. Fur-
thermore, the J matrix trained through Inverse-Ising follows
the logarithmic distribution. Motivated by these observations,
we believe the non-linear data format can provide more
efficient training of the Ising model with less number of bits.
To this end, we propose a logarithmic representation friendly
to Ising machines, ILF, and investigate its efficiency in the
Ising model training. Our evaluation demonstrates that ILF
needs less number of bits than other data formats to construct
the Ising model with precise local minima and high accuracy.
In particular, ILF only needs 4 bits to represent an accurate
Ising model for CF, which can be easily mapped onto 8-bit
resistor values losslessly.

ILF quantization function is defined as:
Qlog(x̂ → x) = sign(x)× s× 2

g
NI

x̂
, (12)

x̂ = clamp(round(log2(|x|/s)× (NI/g)), 0, 2
b−1 − 1), (13)

where g is used to adjust the distance of adjacent logarithmic
representations, b is the number of bits, s is a scaling factor.
2) Mapping ILF-based Ising Model to Ising Machine

To map the Ising model trained through the Inverse-Ising
process onto BRIM, we set resistor values as Rij = 1/Jij .

IV. EVALUATION

A. Experimental Setup

Dataset: The proposed Ising-CF is evaluated with 4
real-world datasets widely used in recommendation sys-

TABLE I
ACCURACY COMPARISON WITH DIFFERENT TRAINING METHODOLOGIES

Dataset Yahoo-Music MovieLens-100K MovieLens-1M Each-Movie

NPA 0.16325 0.32153 0.39562 0.32661
SLNN 0.21924 0.34151 0.42158 0.37434

SLNN+P 0.36486 0.52948 0.53195 0.53251

Fig. 7. Accuracy Comparison of Ising-CFs with Different Data Formats.

tem research, including Yahoo!Music-v1.0, MovieLens-100K,
MovieLens-1M, and EachMovie. The user rating is converted
to implicit feedback (like/dislike) with a threshold of 3.5.

Experimental Metric: To evaluate the model performance,
we use F1-score (F1), Recall (Rec), and Precision (Pre) as
metrics. Note that different from image classification models
that typically use Accuracy for model performance evaluation,
recommendation models use Rec and F1. Following this
tradition, we use F1, Rec, and Pre in the external accuracy
comparison (Ising-CF vs. 6 SOTA methods) and use F1 only
in the internal comparison among Ising-CF with 3 different
design choices and 6 data formats for clarity.

Platforms: The Forward-Ising inference of Ising-CF is
performed on a simulated BRIM system (20W) with 100
BRIM tiles (200mW for each) that work independently. The
SOTA methods are performed on an Intel Gold 6330 CPU
(205W) and a Nvidia A100-PCIe-40GB GPU (250W).

B. Evaluation of Accuracy

Ising-CFs with different design choices: Table I compares
F1 accuracy of Ising-CFs that are constructed with the different
training methods during Inverse-Ising learning including NPA,
SLNN, and augmented SLNN with Ising-voltage polarization
(SLNN+P). The results show that the proposed SLNN-based
Inverse-Ising learning and Ising-voltage polarization signifi-
cantly improve the accuracy of Ising-CF by 19%.

Ising-CFs (SLNN+P) with different data formats: Fig.7
compares the F1 accuracy of Ising-CFs that are quantized with
different data formats for four datasets, including Floating-
Point 64&32, Fixed-Point 16, and the proposed ILF 8&4. All
Ising-CFs are trained with the SLNN+P method. For each data
format, we report both the theoretical accuracy obtained from
Inverse-Ising learning and the practical accuracy delivered
by Ising machines after Ising parameters are mapped onto
resistors. Results show that though Floating Points generally
provide higher theoretical F1 accuracy, there are always sig-
nificant accuracy drops after model mapping due to the limited
choices of resistor values. In contrast, the models using ILFs
with 4 bits achieve comparable accuracy to FP64 and can be
mapped onto Ising machines with negligible accuracy drop.
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TABLE II
OVERALL ACCURACY COMPARISON: PRACTICAL ACCURACY OF ISING-CFS DELIVERED BY BRIMS VS 6 SOTA CF METHODS.

Dataset Yahoo-Music MovieLens-100K MovieLens-1M Each-Movie

Method F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre

Eals-WRMF 0.1565 0.4162 0.0964 0.4096 0.6169 0.3066 0.2932 0.4815 0.2108 0.3818 0.5831 0.2839
Mult-VAE 0.3001 0.4217 0.2329 0.4750 0.6250 0.3831 0.4731 0.7673 0.3420 0.4488 0.6327 0.3478
Mult-DAE 0.3053 0.4203 0.2397 0.4730 0.6234 0.3811 0.4558 0.7413 0.3291 0.4581 0.6453 0.3551

MRF 0.2989 0.4096 0.2354 0.4761 0.6236 0.3851 0.4024 0.6482 0.2918 0.4499 0.6293 0.3501
RecVAE 0.2704 0.3788 0.2103 0.4817 0.6286 0.3904 0.4603 0.7451 0.3331 0.4788 0.6724 0.3718
FastVae 0.2831 0.4392 0.2089 0.4549 0.6369 0.3538 0.3708 0.6386 0.2613 0.4321 0.6674 0.3195

Ising-CF 0.3393 0.4943 0.2583 0.5104 0.6619 0.4153 0.4941 0.7903 0.3594 0.5008 0.6926 0.3922

Fig. 8. Comparison of Normalized latency: Ising-CFs on 20W BRIM Ising System vs 6 SOTA solutions on 205W Gold 6330 CPU and 250W A100 GPU.

Overall Comparison with SOTA CFs: Table II compares
the accuracy (F1, Rec, and Pre) of final Ising-CFs (i.e.,
practical accuracy with SLNN+P & ILF4) with 6 carefully
selected SOTA CF methods. eals-WRMF uses a classical
matrix factorization method based on element-wise alternating
least squares. Mult-VAE and Mult-DAE are deep non-linear
models trained with the multinomial likelihood. MRF is a
probabilistic graphical model combined with autoencoders
and neighbor-based approaches. RecVAE is a deep neural
network collaborative filtering method. FastVae decomposes
the inner-product-based softmax probability to improve the
recommendation quality and efficiency. Results demonstrate
that Ising-CFs outperform SOTA solutions in terms of accu-
racy, delivering more accurate recommendations. The average
recall increase is 7.3%, a significant improvement compared
with the one made in the past decade.

C. Cross-Platform Evaluation of Latency
Fig. 8 compares the recommendation latency of final Ising-

CFs run on a BRIM system with 6 SOTA CF methods
implemented on high-end server-level CPU and GPU. Results
show that, due to the unique computational power brought
by BRIM, Ising-CFs can generate recommendations (i.e.,
inference) within tens of nanoseconds (ns), deliver on average
8186× speedups over CPUs and GPUs, while the BRIM
system consumes only 10% power.

V. CONCLUSION

This paper proposes a novel Ising Machine Learning frame-
work, Ising-CF, that successfully realizes the potential of
both Ising models’ strong expressivity and Ising Machines’
unique computational power in the real world. Taking CF
as a case study, Ising-CF is the first to demonstrate that
Ising methods can outperform traditional SOTA solutions of
real-world applications. Experimental results show that Ising-
CF delivers, on average 8186× speedups and 7.3% accuracy
improvement over SOTA CF methods.
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