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Abstract. Can Monte Carlo (MC) solvers be directly used in gradient-based methods for PDE-
constrained optimization problems? In these problems, a gradient of the loss function is typically
presented as a product of two PDE solutions, one for the forward equation and the other for the
adjoint. When MC solvers are used, the numerical solutions are Dirac measures. As such, one
immediately faces the difficulty in explaining the multiplication of two measures. This suggests that
MC solvers are naturally incompatible with gradient-based optimization under PDE constraints. In
this paper, we study two different strategies to overcome the difficulty. One is to adopt the discretize-
then-optimize technique and conduct the full optimization on the algebraic system, avoiding the
Dirac measures. The second strategy stays within the optimize-then-discretize framework. We
propose a correlated simulation where, instead of using MC solvers separately for both forward
and adjoint problems, we recycle the samples in the forward simulation in the adjoint solver. This
frames the adjoint solution as a test function and hence allows a rigorous convergence analysis.
The investigation is presented through the lens of the radiative transfer equation, either in the
inverse setting from optical imaging or in the optimal control framework. We detail the algorithm
development, convergence analysis, and complexity cost. Numerical evidence is also presented to
demonstrate the claims.
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1. Introduction. The Monte Carlo (MC) method consists of a class of com-
putational strategies that use random samples/particles to represent the underlying
distributions. It is immensely popular in numerical problems with high dimensions
due to its practical and theoretical advantages. It is simple to code up and converges
robustly with a convergence rate independent of the dimension [12] in certain met-
rics. One class of such high-dimensional problems is introduced by kinetic equations
whose state variables reside in seven-dimensional phase space. Parallel to develop-
ing mesh-based methods, direct simulation Monte Carlo (DSMC) and its extensions
[8, 33, 9, 34, 26, 35, 23] have garnered a great amount of interest.
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MONTE CARLO GRADIENT FOR RTE 2745

PDE-constrained optimization is a classical formulation to solve inverse and con-
trol problems. In these problems, the parameters are adjusted accordingly to either
fit the reference data or achieve a certain desired property. In the updating process,
gradients of the loss function are computed in each iteration. This usually trans-
lates to computing two PDEs: one is the original forward equation and the other is
the adjoint PDE. When these PDEs are presented on high dimensions, a prohibitive
computational cost may incur.

To save numerical cost, we naturally face the option of utilizing MC solvers for
gradient-based PDE-constrained optimizations. Then a natural question arises: can
they be applied directly? We investigate this problem using kinetic equations as the
underlying PDEs. An overarching message we would like to deliver in this paper is
that, at least in the case of kinetic equations,

MC solvers are not immediately compatible with gradient-based opti-
mization strategies.

At the core of the difficulty is the incompatibility of the MC perspective and
the computation of the gradients. Indeed, the MC solver views the PDE solution as
a linear combination of Dirac delta functions, each representing one particle. The
gradients derived for the PDE-constrained optimization problems, however, typically
constitute a quadratic form that requires the multiplication of two PDE solutions
(one forward and one adjoint). Mathematically, it is challenging to make sense of a
multiplication of two delta measures. Physically, this incompatibility simply comes
from the fact that two independent particles, formulated from forward and adjoint
procedures, do not share trajectories, and there is an ambiguity in tracing the infor-
mation. As such, a change of perspective is needed to integrate MC PDE solvers into
the PDE-constrained optimization. Since MC solvers only provide convergence to the
PDEs in the weak sense, we have to evaluate the convergence through the dual per-
spective, and all the rigorous proof must be done with exceedingly careful calculation
in the observable space [2].

This shift of perspective will be demonstrated in this paper through the lens of the
radiative transfer equation (RTE), a classical kinetic equation [14]. Kinetic equations
are a class of equations describing the dynamics of many interacting particles. Kinetic
equations are widely used in statistical mechanics to characterize the evolution of
the distribution function of particles before it achieves the equilibrium state. Kinetic
equations sit between thermo/fluid dynamics that describe macroscopic evolution and
molecular dynamics that focus on fine-scale motions. Kinetic equations are practically
useful in engineering and physics, and they also carry some unique mathematical
features. Computationally, MC methods become a natural class of candidates due to
the many-body nature of the system. Samples are drawn from the initial distribution
and then moved around according to the physical law prescribed by the equation
to simulate the evolution of the whole distribution. Monte Carlo strategy has been
successfully applied to the study of the RTE (for photons), the Boltzmann equation
(for rarefied gas), and the Vlasov--Fokker--Planck equation (for plasma), among many
others [8, 12, 21, 18]. In the optimization setting, various MC solvers are designed
in [22, 37]. In our paper, we choose RTE because the equation is linear with a clear
collisional spectrum, and the well-posedness of the associated inverse problem forms a
well-founded base for us to focus on the algorithmic aspect [30, 25, 24, 5, 18, 16, 15].

Our proposal consists of two strategies. One is the optimize-then-discretize (OTD)
approach. It starts with the original optimization problem and derives the gradient
of the loss function. This gradient can usually be written as a product of two PDE
solutions. To resolve the incompatibility between MC solvers and the gradient com-
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2746 QIN LI, LI WANG, AND YUNAN YANG

putation, instead of directly using MC solvers to compute both forward and adjoint
equations separately, we propose to simulate only the forward equation using MC and
record the trajectory for propagating the adjoint information backward in time. A
similar strategy was applied to the Boltzmann equation constrained optimization in
[11]. Such algorithmic design is effortless to execute and will be proved to be theo-
retically sound, in the sense that it still honors the law of large numbers. This way
respects the physical intuition for the role of the adjoint solver (propagating informa-
tion back to the origin of change) and also avoids the artificial mathematical difficulty
in understanding the product of two Dirac delta measures. These features are utilized
in the rigorous justification of the computation method.

The other approach falls in the discretize-then-optimize (DTO) framework [7]. It
discretizes the forward PDE first and presents the PDE solution using MC particles.
The objective function and the constraints are represented only by these particles.
Therefore, the full system is already discrete, and the adjoint variables are particles
with a one-to-one correspondence to the MC particles from the forward PDE particle
solution [11]. The entirely discrete optimization problem removes the incompatibility
issue mentioned above since the derived numerical scheme for the adjoint variables is
always consistent with the forward discretization within this DTO framework. This
MC gradient technique can be further applied to rejection sampling [32, 31, 41], which
also applies to the MC method for the forward RTE. We will leave rigorous proof of
this approach for future research.

Despite the differences, the OTD and DTO approaches designed in our work for
computing the RTE gradient share some similar traits. First, both of them only need
to simulate one set of particles for the forward RTE while the solution to the adjoint
equation is obtained for free. Consequently, they have the same memory requirement.
Second, the most expensive part of obtaining the gradient is computing the discrete
integrals using disordered particles. These two approaches are equivalent under proper
discretization schemes [19, 10, 11].

We now quickly summarize the equation and the setup in subsection 1.1. In
section 2, we employ the OTD approach. We will review an MC solver for the RTE,
present the failure of its direct extension to compute the gradient, and propose our fix.
The associated rigorous numerical analysis is presented in section 3, including both
the convergence of the MC solver for the forward RTE (see Algorithm 2.1) and the
convergence of the gradient (see Algorithm 2.2). Section 4 is dedicated to the DTO
approach, and Algorithm 4.1 will be developed for computing the RTE-constrained
optimization gradient within the DTO framework. Numerical evidence is presented
in section 5.

1.1. Equation and setup. RTE is a model problem for simulating light propa-
gation in an optical environment [14]. For exposition simplicity, we restrict ourselves
to the time-dependent RTE with no boundary effect,\Biggl\{ 

\partial tf + v \cdot \nabla xf = \sigma (x)\scrL [f ],
f(t= 0, x, v) = fin(x, v),

x\in \BbbR dx , v \in \Omega .(1.1)

Here, f(t, x, v) is the distribution function of photon particles at time t on the phase
space (x, v). The left-hand side of the equation describes the photon moving in a
straight line in x with velocity v, whereas the right-hand side characterizes the photon
particles' interaction with the media characterized by the function \sigma (x). The term
\scrL [f ] is written as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MONTE CARLO GRADIENT FOR RTE 2747

\scrL [f ] = 1

| \Omega | 
\langle f\rangle v  - f, with \langle f\rangle v =

\int 
\Omega 

f(x, v)dv.(1.2)

The term \sigma (x)\scrL [f ] represents that particles at location x have a probability propor-
tional to \sigma (x) to be scattered, into a new direction uniformly chosen in the v space. As
a result, the distribution function in the phase space exhibits a gain on | \Omega |  - 1\langle f\rangle v(x)
and a loss on f(x, v). Throughout the paper, we use \langle \cdot \rangle \ast to denote the integration
with respect to the variable \ast , e.g., \langle \cdot \rangle v, \langle \cdot \rangle xv, and \langle \cdot \rangle txv with the Lebesgue measure.

The forward problem (1.1) has a unique solution under very mild conditions on
both \sigma (x) and the initial data fin; see, for instance, [17, 4]. Moreover, the equation
preserves mass because \rho = \langle f\rangle xv is a constant in time. Without loss of generality, we
set \rho = 1 throughout the paper.

RTE is widely used as the forward model in inverse/control problems. One
example of an inverse problem sits under the general umbrella of optical imaging
[24, 37, 20]. In an experiment, one shines light into a domain with unknown optical
properties and measures the light intensity that comes out of the domain. The mea-
surements are then used to infer the optical property of the domain interior. This
inverse problem is widely used in medical imaging and remote sensing, albeit the fre-
quency of light is adjusted accordingly [39]. Another example in control theory using
RTE as the forward model is lens design [29]. By adjusting the optical properties of
the manufactured lens, light can be bent in the desired manner. In both cases, it is
the optical parameter in the RTE that needs to be determined. We now examine the
corresponding computational methods to solve such problems.

We frame our problem using the approach of PDE-constrained optimization. The
objective function can be the mismatch of the simulated light intensity and the mea-
sured data, or the desired light output. The constraint comes from the fact that the
solution needs to satisfy a forward RTE. Without loss of generality, we assume the
measurement is a measurement operator \scrM acting on the final-time solution of the
RTE, and this generated data should be close to true reading:

d(x, v)\approx \scrM (f(t= T,x, v)) .

Then the corresponding PDE-constrained optimization reads as

min
\sigma 
J(\sigma ), with J(\sigma ) =

1

2

\Bigl\langle 
| \scrM (f\sigma (t= T,x, v)) - d(x, v)| 2

\Bigr\rangle 
xv
,(1.3)

where f\sigma (t, x, v) is the simulated data that solves (1.1) with the given initial condition
and absorbing parameter \sigma (x). We will write f\sigma (t, x, v) as f(t, x, v) hereafter for
simplicity of notation. The goal is to adjust \sigma so that the simulated data is as close
to the true measured data d(x, v) as possible. Here we use the standard L2 norm to
measure ``closeness,"" but it shall be generalized to other metrics. In real-life problems,
it is typical that the measurement is ``intensity"" (\langle f\rangle v) instead of the solution profile
f . Additionally, it is very typical to add a regularization term to mitigate the effects
of noise and improve the convexity of the optimization problem. The derivation below
can be extended easily to deal with all these variations.

The integration of MC methods and this constrained optimization problem will
be presented from two perspectives in the rest of the paper. On the one hand, we
can follow the OTD approach and derive the Fr\'echet derivative of J with respect to
\sigma . This will come down to simulating two PDEs (one forward and one adjoint RTE),
and the MC solver needs to be properly applied. On the other hand, we also take the
DTO approach and start by reformulating (1.3) into a discrete form based on the MC
solver. The gradient and optimization are then conducted entirely on this algebraic
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2748 QIN LI, LI WANG, AND YUNAN YANG

system. These two pathways will be presented in sections 2 and 3, and section 4,
respectively.

2. Optimize-then-discretize framework. The OTD framework is the most
straightforward numerical strategy for solving PDE-constrained minimization prob-
lems. This strategy derives a Lagrangian to eliminate the constraints and adopts a
minimization method, per the user's choice, to handle the resulting unconstrained
optimization problem. This minimization strategy is performed directly on the PDE
level, and the formulation is written in a continuous setting. When gradient-based
optimization methods are used, one typically needs to compute the Fr\'echet derivatives
for updates. Discretization is then performed to simulate the PDE and approximate
the Fr\'echet derivative for the final execution of the algorithm. We detail the procedure
below.

We first apply the method of Lagrange multipliers and transfer the original con-
strained optimization formulation (1.3) into an unconstrained one:

min
\sigma ,f,g,\lambda 

\frakL (f, g,\lambda ,\sigma ),

where

\frakL (f, g,\lambda ,\sigma ) = J(f) + \langle g, \partial tf+v \cdot \nabla xf  - \sigma (x)\scrL [f ]\rangle txv+\langle \lambda , f(t= 0, x, v) - fin(x, v)\rangle xv.

Here, functions g(t, x, v) and \lambda (x, v) are Lagrange multipliers with respect to the
RTE solution f(t, x, v) for t > 0 and the initial condition f(t = 0, x, v), respectively.
It is common to refer to f(t, x, v) as the state variable and g(t, x, v) as the adjoint
variable in PDE-constrained optimizations. With integration by parts, we rewrite the
Lagrangian as

\frakL (f, g,\lambda ,\sigma ) = J(f)+\langle f, - \partial tg - v \cdot \nabla xg - \sigma (x)\scrL [g]\rangle txv+\langle \lambda , f(t= 0, x, v) - fin(x, v)\rangle xv
+ \langle g(t= T,x, v), f(t= T,x, v)\rangle xv  - \langle g(t= 0, x, v), f(t= 0, x, v)\rangle xv.

Setting the variation of \frakL with respect to f to be 0, we obtain the adjoint equation\left\{     
 - \partial tg - v \cdot \nabla xg = \sigma (x)\scrL [g],

g(T,x, v) = - \delta J

\delta f(T,x, v)
,

(2.1)

where the final condition at T comes from the form of J given in (1.3). Then the
Fr\'echet derivative of \frakL with respect to the function \sigma has the form

\frakG :=
d\frakL 

d\sigma 
=
\delta \frakL 

\delta f

df

d\sigma 
+
\delta \frakL 

\delta g

dg

d\sigma 
+
\delta \frakL 

\delta \lambda 

d\lambda 

d\sigma 
+
\delta \frakL 

\delta \sigma 

=
\delta \frakL 

\delta \sigma 
(x) = - 

\int 
v,t

f\scrL [g]dvdt=
\int 
t

\langle fg\rangle vdt - 
1

| \Omega | 

\int 
t

\langle f\rangle v\langle g\rangle vdt=:\frakG 1  - | \Omega |  - 1\frakG 2,(2.2)

where the terms \delta \frakL 
\delta f ,

\delta \frakL 
\delta g , and

\delta \frakL 
\delta \lambda vanish since f and g solve (1.1) and (2.1), respectively.

Here, \frakG 1 =
\int 
t
\langle fg\rangle vdt and \frakG 2 =

\int 
t
\langle f\rangle v\langle g\rangle vdt.

The derivation above is carried out completely on the function space in the con-
tinuous setting, as done in the OTD framework. Here, we endow the functional space
for the parameter \sigma (x) with the L2 inner product, so the derivative \delta \frakL 

\delta \sigma (x) is indeed
the L2 gradient. As such, we use ``gradient"" and ``derivative"" interchangeably. Upon
obtaining (2.2), the next step is to find a discrete approximation to it. In particular,
we represent the unknown parameter function \sigma (x) using a finite-dimensional object,
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MONTE CARLO GRADIENT FOR RTE 2749

such as a piecewise polynomial function on a compact domain, and replace f and g
by their associated numerical representations. As a result, the numerical error purely
comes from the computation of (1.1), (2.1), and the derivative-assembling (2.2).

A handful of numerical strategies can be used to solve the constraint PDE (1.1),
such as finite difference, finite element, and spectral methods [27, 1, 28]. In this paper,
we focus on the MC method and investigate the possibility of using it to compute the
gradient (2.2).

2.1. Monte Carlo method for \bfitf . In this subsection, we first review the MC
method [34, 18] used in solving the forward problem (1.1). It serves as the base of
our computation. Though intuitive, the proof has not been thoroughly presented in
the literature. We give a theoretical guarantee for the convergence of this method in
this section.

Using MC to solve (1.1) amounts to representing the solution f as an ensemble
of many particles:

f(t, x, v)\approx 1

N

N\sum 
n=1

\delta (x - xn(t)) \delta (v - vn(t)) =: \sansf N (t, x, v),(2.3)

where (xn(t), vn(t)) denote the nth particle's location and velocity, respectively. Since
(1.1) has a natural interpretation of particle interaction, it is straightforward to single
out the particle dynamics. More precisely, we have the following:

\bullet Term v \cdot \nabla xf : This is a transport term suggesting that particles should move
with velocity v, and therefore we set

\.xn = vn.

\bullet Term \sigma (x)\scrL [f ]: This term indicates that, with intensity \sigma (x), particles inter-
act with the media and adopt a new velocity, which is uniformly chosen from
the velocity domain \Omega . This is reminiscent of the Poisson process in that for
all s - t < p\sim Pois(e - \sigma (xn)), vn(s) = vn(t), and when s= t+p, vn switches to

vn(t+ p) = \eta \sim \scrU (\Omega ),

where \scrU stands for a uniform distribution.
These understandings prompt the following formulation for Algorithm 2.1; see
also [18].

Algorithm 2.1 Monte Carlo method for solving the forward RTE (1.1).

1: Preparation: N pairs of samples \{ (x0n, v0n)\} Nn=1, sampled from the initial
distribution fin(x, v); the total time steps M and the time interval \Delta t so that
T =M\Delta t; and the parameter function \sigma (x).

2: for m= 0 to M  - 1 do
3: Given \{ (xmn , vmn )\} Nn=1, set x

m+1
n = xmn +\Delta t vmn , n= 1, . . . ,N .

4: Draw random numbers \{ pm+1
n \} Nn=1 from the uniform distribution \scrU ([0,1]).

5: if pm+1
n \geq \alpha m+1

n = exp( - \sigma (xm+1
n )\Delta t) then

6: Set vm+1
n = \eta m+1

n where \eta m+1
n \sim \scrU (\Omega ).

7: else
8: Set vm+1

n = vmn .
9: end if
10: end for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2750 QIN LI, LI WANG, AND YUNAN YANG

As written, all particles (xmn , v
m
n ) are independent of each other, so we drop the

subindex n, and only keep m representing the time step. From each time step to
the next, two random variables are involved. One is the rejection sampling conducted
through pm+1. The other is the uniform sampling of \eta m+1. We denote the expectation
with respect to these two variables as \BbbE pm+1 and \BbbE \eta m+1 , respectively.

We will prove that Algorithm 2.1 provides an accurate solver for (1.1) in the weak
sense. In particular, consider the test function set

\Phi =C\infty 
c (\BbbR dx \times \Omega ).(2.4)

We will show that the error, when tested against any \phi \in \Phi , is well controlled in the
sense of both the expectation and the law of large numbers (LLN). More specifically,
let

\sanse mN,\phi := \langle \sansf m  - f(tm, x, v), \phi \rangle xv =
1

N

N\sum 
n=1

\phi (xmn , v
m
n ) - 

\int 
f(tm, x, v)\phi (x, v)dxdv(2.5)

denote the error term. It can be viewed as a dual norm associated with the function
space \Phi , which metricizes the weak convergence. We will use the short-hand notation
f(tm) to denote f(tm, x, v) hereafter. The quantity defined in (2.5) is related to the
flat norm defined in [36, Example 8.8]. In principle, the fact that \sanse mN,\phi converges to
zero for all \phi \in \Phi as N \rightarrow \infty is equivalent to the weak convergence of \sansf m to f(tm).

For different realizations of \{ xmn , vmn \} , the value \sanse mN,\phi changes accordingly, and
thus is a stochastic process on a probability space spanned by random variables
\{ pm, \eta m\} Mm=1 and hence naturally generates a filtration. To stress the m dependence,
we sometimes denote

\BbbE m =

\Biggl\{ 
\BbbE (x0,v0), m= 0,

\BbbE (x0,v0)\BbbE \eta 1\BbbE p1 \cdot \cdot \cdot \BbbE \eta m\BbbE pm , m\geq 1,

as taking the expectation up to the filtration at time tm = m\Delta t. In what follows,
\BbbE m[\sanse mN,\phi ] and \BbbE [\sanse mN,\phi ] are used interchangeably. We will prove the following theorem:

Theorem 2.1. Let \sansf be produced by Algorithm 2.1 with T > 0, M \in \BbbN , and
\Delta t= T/M . Then for any \phi \in \Phi , the error \sanse MN,\phi 

\bullet is first order in time in expectation:

\BbbE 
\bigm| \bigm| \sanse MN,\phi 

\bigm| \bigm| =\scrO (\Delta t) ;(2.6)

\bullet has an exponential concentration bound in N . Namely, for all \epsilon > 0,

\BbbP 
\bigl( 
| \sanse MN,\phi | \geq \epsilon +\Delta t

\bigr) 
\lesssim exp

\bigl( 
 - N\epsilon 2

\bigr) 
.(2.7)

We have a few comments on Theorem 2.1. First, the notations \scrO and \lesssim hide
a constant dependence. As expected, this constant depends on T , initial condition
fin, and \phi , but we stress that it does not depend on M and \Delta t. We will make this
constant dependence clear in the proofs of Propositions 3.2 and 3.5 in section 3, which
are dedicated to explaining the two bullet points in Theorem 2.1 separately. Second,
the conclusion above presents a strong contrast against traditional numerical methods
such as finite difference or finite volume, where the Lax theorem requires both consis-
tency and stability for the convergence, and the stability requirement usually poses
conditions on \Delta t. The statement in our theorem holds true with \Delta t not experiencing
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MONTE CARLO GRADIENT FOR RTE 2751

the extra stability issue. Third, the error is first order in time and \scrO (1/
\surd 
N) in the

number of particles. Note that the exponential form in (2.7) is consistent with the
prediction of the LLN. Indeed, for a small \delta ,

exp
\bigl( 
 - N\epsilon 2

\bigr) 
\leq \delta \Leftarrow \Rightarrow \epsilon >

\sqrt{} 
| log \delta | /N.

Thus, the lower bound of \epsilon honors the celebrated \scrO (1/
\surd 
N) convergence rate for MC

methods.
We stress that the error is quantified when tested against a test function \phi . This

is inevitable since \sansf is a summation of delta measures, and the convergence has to be
presented in the weak form.

2.2. Pitfall of a direct Monte Carlo for \bfitg . Due to the similarity between the
forward (1.1) and adjoint (2.1) equations, it is natural to use the same MC method
to obtain g. Indeed, letting \tau = T  - t, (2.1) rewrites as

\partial \tau g - v \cdot \nabla xg= \sigma \scrL [g],(2.8)

which is precisely the same as (1.1) except for the flip of the sign in velocity. Therefore,
if we denote \{ xn, vn\} Nn=1 to be a list of N particles, then the same particle motion
described in subsection 2.1 can be used here to produce a consistent algorithm. As
before, we can define

\sansg N (\tau ,x, v) =
1

N

N\sum 
n=1

\delta (x - xn(\tau ))\delta (v - vn(\tau )).

As with \sansf N , we expect that \sansg N approximates g(\tau ,x, v) in the same way as in Theo-
rem 2.1, namely, \langle g - \sansg N , \phi \rangle \sim 0 in the \Delta t\rightarrow 0 and N \rightarrow \infty limit.

Together, we have \sansg N \approx g and \sansf N \approx f . It is tempting to compute \frakG by replacing
f and g with their numerical approximations \sansf N and \sansg N , respectively. The discrete
version of (2.2) may take the form

\frakG 1 =

\int 
\langle f\rangle v\langle g\rangle vdt\approx \Delta t

M\sum 
m=1

\langle \sansf mN \rangle v\langle \sansg mN \rangle v, \frakG 2 =

\int 
t

\langle fg\rangle vdt\approx \Delta t

M\sum 
m=1

\langle \sansf mN \sansg mN \rangle v.

However, this immediately yields a problem since both \sansf N and \sansg N are defined as delta
measures. The definitions of both \langle \sansf mN \rangle v\langle \sansg mN \rangle v and \langle \sansf mN \sansg mN \rangle v represent multiplications
of two delta measures and thus cannot be justified mathematically. Indeed, according
to Theorem 2.1, the convergence of \sansf N \rightarrow f and similarly \sansg N \rightarrow g is achieved only
in the weak sense. Then the product of two weak limits loses its precise definition.
This suggests that naively computing the forward and adjoint equations using the
standard MC solvers for assembling the gradient in (2.2) cannot produce an accurate
numerical approximation to the gradient.

We address the fact that this incompatibility of MC solvers with the Fr\'echet
derivative computation is not a mathematical artifact but is rooted in the physical
meaning of forward and adjoint equations. At the core of computing the Fr\'echet
derivative, the forward solver delivers the initial data to the final time by picking
up the media information along the evolution. The Fr\'echet derivative captures the
dependence of the final data on the media \sigma (x) where the forward trajectories have
visited. A small perturbation in \sigma (x) will change the final data accordingly. Adjoint
solvers allow us to trace back this change in the final data to the perturbation in media.
The inconsistency problem of the MC solver comes from the fact that the forward
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2752 QIN LI, LI WANG, AND YUNAN YANG

solver and the adjoint solver use independent trajectories. While the forward solver
delivers the change of media along certain trajectories to the change of the final data,
the adjoint solver traces back such change along a totally different set of trajectories.
There is a chance to conduct computation if the two sets of trajectories are close, but
these events occur with an extremely small probability due to the independent nature
of the trajectory generation process.

We believe there are numerical strategies to resolve this issue, for example, ap-
proximating Dirac delta functions using Gaussian kernels with small support. In this
specific context, this amounts to running MC for both the forward RTE f and the
adjoint RTE g and then performing density estimation using basis functions such as
polynomial functions or Gaussian kernels to smooth them out for the integration. By
doing so, the computational cost mainly comes from density estimation and numer-
ical integration. We should point out that even though numerical integration only
requires a linear order complexity, the density estimation can be computationally pro-
hibitive. For piecewise polynomial interpolation, for example, the sample complexity
is N \sim \sansN d/\epsilon 2 and the computational complexity is \sansp \sanso \sansl \sansy (\sansN , d,1/\epsilon ), where \sansN and d
are the number of grids and the degree of polynomial, respectively [13]. Given that
the grid number exponentially depends on the dimension, this cost is substantially
higher than what a classical MC solver requires. Moreover, according to the derivative
above, such density estimation needs to be done at every time step. In a nutshell, the
approach of integrating MC with a grid-based method, if not deployed well, garners
the worse sides of both: it loses accuracy due to the implementation of MC, and it
suffers from the curse of dimensionality due to the grid requirements; see reduced
variance techniques or sparse grid methods employed [40, 3] on this front. Such cost
can be completely avoided if we sample g at the final time in a smart way, and this
leads us to the discussion in the upcoming section.

2.3. Gradient calculation revisited. In this work, we develop a new method
for (2.1) to avoid ambiguity in defining the product of two delta measures. To begin
with, we examine the relation between the adjoint and forward variables. One obser-
vation is that the adjoint variable is designed to have certain quantities preserved in
time:

\partial t\langle fg\rangle xv \equiv 0,(2.9)

which can be justified, in our particular setting, by comparing (1.1) multiplied by g
and (2.1) by f .

This relation, when replacing f by \sansf N , becomes

N\sum 
n=1

g(tm, xmn , v
m
n ) =

N\sum 
n=1

g(tm+1, xm+1
n , vm+1

n ),

which can be easily satisfied if we require

g(tm, xmn , v
m
n ) = g(tm+1, xm+1

n , vm+1
n ), m=M  - 1, . . . ,0,

with the final condition set to be

g(T,xMn , v
M
n ) =\psi (xMn , v

M
n ) = - \delta J

\delta f
(T,xMn , v

M
n ).(2.10)

As a result, along every particle's trajectory of \{ (xmn , vmn )\} Mm=0, g takes a constant
value. In other words, if we denote \sansg mN (x, v) as the numerical solution approximating
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MONTE CARLO GRADIENT FOR RTE 2753

g(tm, x, v) using N particles, then we have scattered value of \sansg mN (x, v) at the particle
locations along the dynamics:

\sansg mN (x, v)
\bigm| \bigm| 
(xm

n ,vm
n )

= \sansg mN (xmn , v
m
n ) = \sansg n :=\psi (xMn , v

M
n )(2.11)

for all 0 \leq m \leq M and 1 \leq n \leq N . For (x, v) \not \in \{ (xMn , vMn )\} Nn=1, we may define the
value of \sansg mN (x, v) through interpolation from \{ \sansg mN (xmn , v

m
n )\} Nn=1 = \{ \sansg n\} Nn=1.

We call this approach a correlated approach, due to the fact that \sansg and \sansf are not
fully independent, as discussed in subsection 2.2.

Remark 1. We should emphasize that the algorithm presented in (2.11) is derived
merely from the relation (2.9), which is not equivalent to the original adjoint equation
(2.1). Indeed, starting from (2.9), one can only tell that g satisfies

\langle \partial tg - v \cdot \nabla xg - \sigma \scrL g, f\rangle xv = 0.

That is, the adjoint equation holds only when projected on f , the solution manifold
to the forward equation (1.1). This is different from saying that g is a weak solution
to (2.1), which requires the above equation to hold for any test function in \Phi instead
of f alone. Nevertheless, the solver (2.11) indeed provides an approximation to (2.1),
and the proof is omitted from the current paper.

With the numerical solution \sansg in hand, we now proceed to find numerical ap-
proximation to the Fr\'echet derivative (2.2). Based on the weak formulation of f
and that \sansf is presented discrete-in-time, the Fr\'echet derivative is written in its weak
semidiscrete-in-time form as well. After testing (2.2) against a test function \phi (x) and
conducting the simple Riemann sum in time, we have

\frakG \phi :=

\Biggl\langle 
\delta \frakL 

\delta \sigma 
,\phi 

\Biggr\rangle 
x

=

\int 
\langle f(tm, \cdot , \cdot )g(tm, \cdot , \cdot ), \phi (\cdot )\rangle xvdt(2.12)

 - | \Omega |  - 1

\int \Bigl\langle 
\langle f(tm, \cdot , \cdot )\rangle v\langle g(tm, \cdot , \cdot )\rangle v, \phi (\cdot )

\Bigr\rangle 
x
dt

\approx \Delta t

M\sum 
m=1

\bigl[ 
\frakG m

1,\phi  - | \Omega |  - 1\frakG m
2,\phi 

\bigr] 
,

where we used the notation

\frakG m
1,\phi := \langle f(tm, \cdot , \cdot )g(tm, \cdot , \cdot ), \phi (\cdot )\rangle xv, \frakG m

2,\phi :=
\Bigl\langle 
\langle f(tm, \cdot , \cdot )\rangle v\langle g(tm, \cdot , \cdot )\rangle v, \phi (\cdot )

\Bigr\rangle 
x
.

(2.13)

At every discrete time tm, according to Algorithm 2.2, \sansf mN approximates f(tm, \cdot , \cdot )
using N particles, and \sansg mN records the value of g(tm, \cdot , \cdot ) on these particle trajectories.
As a consequence, the discrete version of (2.13) is written as

\frakG m
N,1,\phi =

1

N

N\sum 
n=1

\phi (xmn )\sansg n, \frakG m
N,2,\phi =

1

N

N\sum 
n=1

\phi (xmn ) \langle \sansg \rangle v(xmn ),(2.14)

and thereby, the final discrete Fr\'echet derivative, when tested on \phi , takes the following
form as the N -particle approximation to (2.12):

\frakG N,\phi :=

\Biggl\langle 
\delta \frakL N

\delta \sigma 
,\phi 

\Biggr\rangle 
x

=\Delta t

M\sum 
m=1

\bigl( 
\frakG m

N,1,\phi  - | \Omega |  - 1\frakG m
N,2,\phi 

\bigr) 
.(2.15)
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2754 QIN LI, LI WANG, AND YUNAN YANG

In the implementation, we want the derivative to be evaluated on a given mesh.
To do so, for every \=x on the mesh, we denote by \Delta x the mesh size and by Q(\=x,\Delta x)
the hypercube centered at \=x with side length \Delta x, and set \phi = 1

| \Delta x| d 1Q(\=x,\Delta x), the
corresponding indicator function. The approximated derivative at a particular mesh
point \=x then becomes

\frakG N (\=x) =
\delta \frakL N

\delta \sigma 
(\=x) =\Delta t

N\sum 
m=1

\Bigl( 
\langle \sansf mN \sansg mN \rangle v(\=x) - | \Omega |  - 1\langle \sansf mN \rangle v(\=x)\langle \sansg mN \rangle v(\=x)

\Bigr) 
,(2.16)

with each term computed as

\langle \sansf mN \rangle v(\=x) =
1

| \Delta x| d
1

N

N\sum 
n=1

1xm
n \in Q(\=x;\Delta x),(2.17)

\langle \sansg mN \rangle v(\=x) =
\sum 

xm
n1

\in Q(\=x;\Delta x)

wm
n1

\sansg n1
,(2.18)

\langle \sansf mN \sansg mN \rangle v(\=x) =
1

| \Delta x| d
1

N

N\sum 
n=1

1xm
n \in Q(\=x;\Delta x) \sansg n.(2.19)

Here, \{ wm
n1
\} are the quadrature weights in the v domain such that\sum 

xm
n1

\in Q(\=x;\Delta x)

wm
n1

\sansg n1
=

\sum 
xm
n1

\in Q(\=x;\Delta x)

wm
n1
\sansg nN (xmn1

, vmn1
)

\approx 
\sum 

xm
n1

\in Q(\=x;\Delta x)

wm
n1
g(tm, \=x, vmn1

)\approx 
\int 
g(tm, \=x, v)dv.

In particular, out of three calculations listed in (2.17)--(2.19), (2.18) is the most ex-
pensive part. The reason is that, at each time step, one needs to loop over space to
sort the particles, which results in \scrO (NM(logN)) total complexity with N being the
total number of particles and M the total time steps.

Remark 2. Above, we compute the gradient by convolving f with a test function
\phi centered at \=x, the point of gradient evaluation. We choose \phi as a characteristic
function, so that the resulting gradient \frakG N (\=x) is piecewise constant with respect to
\=x. However, if we know a priori that either \sigma (x) or the true gradient has better
regularity, we can use a test function \phi with the same regularity to enforce it in the
computed gradient \frakG N (\=x) as a function of \=x.

In Algorithm 2.2, we summarize the steps of computing the gradient using the
correlated approach.

We note that the approximation to the Fr\'echet derivative (2.16) contains four
layers of error:

\bullet Time discretization. \Delta t
\sum M

m=1 is used as a replacement of
\int 
dt. This is the

simplest Riemann sum for the time integration, and we expect the error at
the order of \Delta t. Throughout our analysis, this part of the error is omitted as
we regard the following semidiscrete in-time Fr\'echet derivative as the ground
truth:

\delta \frakL 

\delta \sigma 
(x) =\Delta t

M\sum 
m=1

\Bigl( 
\langle fg(tm, x, \cdot )\rangle v  - | \Omega |  - 1\langle f(tm, x, \cdot )\rangle v\langle g(tm, x, \cdot )\rangle v

\Bigr) 
.(2.20)

It is the strong form of (2.12).
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MONTE CARLO GRADIENT FOR RTE 2755

Algorithm 2.2 A correlated approach for gradient computation.

1: Given cell centers \{ \=xj\} where we want to evaluate the gradient (2.2).
2: Implement Algorithm 2.1 to solve the forward RTE (1.1) and store the

trajectories \{ (xmn , vmn )\} for all n= 0, . . . ,M and n= 1, . . . ,N .
3: Use (1.3) and (2.10) to determine the final condition for g and set \sansg n following

(2.11) for all 1\leq n\leq N .
4: for m= 1 to M do
5: Use the stored \{ (xmn , vmn )\} Nn=1 and \{ \sansg n\} Nn=1 to compute \langle \sansf mN \rangle v(\=xj), \langle \sansg mN \rangle v(\=xj),

and \langle \sansf mN \sansg mN \rangle v(\=xj) following (2.17), (2.18), and (2.19), respectively, for every
element in \{ \=xj\} .

6: end for
7: The gradient evaluated at \=xj is computed following (2.16).

\bullet Spatial discretization. This is used in the final assembling of the gradient
(2.16) where for every fixed \=x, a small hypercube of volume \Delta xd is drawn,
and values are averaged out inside the cube. It naturally brings a smoothing
effect. Such smoothing effects are heavily studied in the literature, and we
only cite [38] for details.

\bullet Quadrature error in the velocity domain. This enters through the term (2.18)
to approximate the velocity domain integration \langle \cdot \rangle v. The error from this term
highly depends on the quadrature rule selected for defining \{ wm

n1
\} . With the

simplest trapezoidal rule, we expect the error to be of order \scrO (\Delta v2), where
\Delta v is the largest discrepancy between two sampled particles in velocity in
the same \=x-neighborhood. Throughout the paper, we denote this part of the
error by ev. We comment that this term inherits the randomness from MC
sampling and requires some delicate analysis. This goes beyond the current
scope of the paper and will be left to future study.

\bullet Monte Carlo error. This comes from the fact that random particles represent
the PDE solution. Theorem 2.1 states that \sansf mN is a good approximation, with
LLN (\scrO (1/

\surd 
N)) convergence rate, to the ground truth f(tm). A statement

of similar flavor shall be provided for the gradient.
Among these four types of errors, the second and third kinds start to matter only

when the error is presented in the strong form. If the error is studied in the weak form,
one only needs to analyze the first and fourth kinds. Since the time discretization is a
standard Riemann sum error, the focus of the paper is placed on the fourth: the MC
error. The estimates we obtain justify that in the weak sense, Algorithm 2.2 indeed
provides, with high confidence, an accurate approximation to the semidiscrete-in-time
ground-truth gradient. The rigorous statement is summarized as follows:

Theorem 2.2. For all \phi \in \Phi , \frakG N,\phi defined in (2.15) approximates the true de-
rivative \frakG \phi in its semidiscrete form (2.12) with high probability. Namely, for any
\epsilon > 0,

\BbbP (| \frakG N,\phi  - \frakG \phi | >\scrO (\epsilon +\Delta t+ | ev| ))\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
,(2.21)

with C3 only depending on the regularity of the initial condition in (1.1), the final
condition in (2.1), and the test function; see (3.22).
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2756 QIN LI, LI WANG, AND YUNAN YANG

This theorem is the theoretical justification of Algorithm 2.2. It states that the
numerical Fr\'echet derivative, defined using a summation of delta measures, approx-
imates the true gradient in the weak sense, with a probability that depends on the
number of particles in the algorithm. Involving more particles guarantees a higher
probability of capturing the gradient with better precision. The formula (2.21) gives
a precise quantification of the decay of possibilities, in N , of getting outliers. Similar
to Theorem 2.1, this convergence rate is in line with the LLN prediction and obtains
a 1\surd 

N
decay. Since this is the rate of the MC solver for the forward problem (see

Theorem 2.1), it is the best one can hope for in the computation of the gradient.

3. Numerical analysis. We hereby provide the justification to Theorems 2.1
and 2.2 regarding the computation of f in (1.1) and the Fr\'echet derivative (2.2)
calculation.

3.1. Convergence of the Monte Carlo method for the forward RTE.
In Algorithm 2.1, we have presented the MC solver for computing (1.1). From each
time step to the next, two random variables are involved. One performs the rejection
sampling, and the other is the uniform sampling for the new velocity direction. The
current section is dedicated to proving Theorem 2.1 that gives both an expectation
and concentration bound for the error \sanse mN,\phi .

Based on the definition in (2.5), \sanse mN,\phi = \langle \sansf mN  - f(tm), \phi \rangle x,v where \sansf N = 1
N

\sum 
n \delta (x - 

xmn )\delta (v  - vmn ). Since \{ (xmn , vmn )\} Nn=1 are independent of each other for any fixed m,
we have

\sanse mN,\phi =
1

N

N\sum 
n=1

\sanse m1,\phi (n),(3.1)

where \sanse m1,\phi (n) is the nth realization of \sanse m1,\phi . This then implies that at the expectation
level, \BbbE [\sanse m1,\phi ] = \BbbE [\sanse mN,\phi ]. At the variance level, the concentration inequality shall be
applied. These arguments clearly suggest the following roadmap:

\bullet We will first prove that each particle, in expectation, solves the RTE (1.1).
This is to say that, if N = 1 and we accordingly define

\sansf m1 (x, v) := \delta (x - xm)\delta (v - vm),(3.2)

then \sansf m1 (x, v) numerically solves (1.1) in the weak sense in expectation, up to
a discretization error in \Delta t. More precisely, for any \phi \in \Phi ,

\BbbE m[\sanse m1,\phi ] =\BbbE m [\langle \sansf m1  - f(tm), \phi \rangle x,v] =\scrO (m\Delta t2).

The analysis is presented in subsection 3.1.1, and it concludes the first part
of Theorem 2.1.

\bullet We then level the calculation up to the N -particle system using (3.1), calling
the Bernstein inequality. To directly utilize the concentration bound, we will
control the variance of \sanse m1,\phi . This is to be discussed in subsection 3.1.2 and it
concludes the second part of Theorem 2.1.

3.1.1. Single particle. We prove that each particle sampled according to Algo-
rithm 2.1, in expectation, traces the evolution of f in the weak sense. For any \phi \in \Phi ,
we recall the definition of the error in (2.5) and denote the expected value to be

em1,\phi =\BbbE m
\bigl[ 
\sanse m1,\phi 

\bigr] 
=\BbbE m [\langle \sansf m1  - f(tm), \phi \rangle x,v] ,(3.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.2

.1
92

.8
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MONTE CARLO GRADIENT FOR RTE 2757

where the subindex 1 in \sanse and e reflects that there is only one particle. This index
will be omitted in the remainder of section 3.

We will track the growth of em\phi with respect tom and prove that in each time step,
the growth is controlled by \scrO (\Delta t2). Thus, the whole scheme is first-order accurate
in time. In the proof of Lemma 3.1, we use several positive constants denoted by Ci,
i= 1,2, . . . . We will make explicit the constants' dependence on different parameters
but do not spell out the specific dependence. Their exact values may change from
line to line.

Lemma 3.1. Let \sigma (x)\in W 1,\infty (\BbbR dx) and \Omega be a bounded velocity domain. Denote
by \{ (xm, vm)\} the solution of the particle trajectory through Algorithm 2.1. Then \sansf 1
defined in (3.2) approximates f , the solution to (1.1), in the expectation sense. More
specifically, for any \phi \in \Phi and any m\geq 0, we have

em+1
\phi \leq em(I+\Delta t\scrP )\phi +C1\Delta t

2, \scrP \phi := v \cdot \nabla x\phi + \sigma \scrL [\phi ],(3.4)

where the positive constant

C1 =C1(\| fin\| W 2,\infty 
x L\infty 

v
,\| v\| L\infty (\Omega ),\| \sigma \| W 1,\infty 

x
,\| \phi \| W 2,\infty 

x,v
, T ).(3.5)

Moreover, e0\phi = 0, and we have

| em\phi | \leq mC1\Delta t
2.

Therefore, em\phi \rightarrow 0 in the limit of \Delta t\rightarrow 0 for every fixed 1\leq m\leq M .

Proof. According to the definition,

\sanse m\phi = \langle \sansf m1  - f(tm), \phi \rangle xv = \phi (xm, vm) - \langle f(tm), \phi \rangle xv.

To study \sanse m\phi , we need to track the evolution of \sanse m+1
\phi  - \sanse m\phi , which amounts to evaluating

\phi (xm+1, vm+1) - \phi (xm, vm) and \langle f(tm+1) - f(tm), \phi \rangle xv.
The term \phi (xm+1, vm+1) - \phi (xm, vm) can be expanded as

\phi (xm+1, vm+1) - \phi (xm, vm)

(3.6)

= \phi (xm+1, vm+1) - \phi (xm+1, vm) + \phi (xm+1, vm) - \phi (xm, vm)

= \phi (xm+1, vm+1) - \phi (xm+1, vm) +\Delta t vm \cdot \nabla x\phi (x
m, vm) +

\Delta t2

2
(vm)\top \nabla 2

x\phi (\xi 1)v
m,

where \nabla 2
x\phi is the Hessian of \phi with respect to the x direction, and \xi 1 is between xm

and xm+1. Note that the event vm+1 = \eta \not = vm occurs with probability 1 - e - \sigma (xm+1)\Delta t.
Thus,

\BbbE \eta m+1\BbbE pm+1

\bigl[ 
\phi 
\bigl( 
xm+1, vm+1

\bigr) 
 - \phi 

\bigl( 
xm+1, vm

\bigr) \bigr] 
=
\Bigl( 
1 - e - \sigma (xm+1)\Delta t

\Bigr) 
\scrL [\phi ]

\bigl( 
xm+1, vm

\bigr) 
=\Delta t (\sigma \scrL [\phi ])

\bigm| \bigm| 
(xm,vm)

+\Delta t2 (\nabla x (\sigma \scrL [\phi ]) \cdot v)
\bigm| \bigm| 
(\xi 2,vm)

,(3.7)

where \xi 2 is again between xm and xm+1.
Consequently, the above equation (3.7), along with (3.6), leads to

\BbbE m+1
\bigl[ 
\phi (xm+1, vm+1) - \phi (xm, vm)

\bigr] 
\leq \Delta t\BbbE m [\scrP \phi (xm, vm)] +\Delta t2

\bigl( 
c1\| \nabla x (\sigma \scrL [\phi ])\| \infty + c2\| \nabla 2

x\phi \| \infty 
\bigr) 
,(3.8)

where c1 = 2\| v\| L\infty (\Omega ), c2 = \| v\| 2L\infty (\Omega ), and the operator \scrP is defined in (3.4).
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2758 QIN LI, LI WANG, AND YUNAN YANG

To study \langle f(tm+1) - f(tm), \phi \rangle xv, we employ (1.1):

f(tm+1) - f(tm)

\Delta t
= \sigma \scrL [f ](tm) + v \cdot \nabla xf(t

m) +
\Delta t

2
\partial ttf(\xi t) for \xi t \in (tm, tm+1).

Since \partial ttf solves the same equation (1.1) with initial condition

\partial ttf(0, x, v) = \sigma \scrL [\sigma \scrL [fin] - v \cdot \nabla xfin] - v \cdot \nabla x(\sigma \scrL [fin] - v \cdot \nabla xfin),

it follows that

\| \partial ttf(t, \cdot , \cdot )\| L1
x,v

\leq C\| fin\| W 2,\infty 
x L\infty 

v
:= c3,(3.9)

where C and c3 are constants. Thus, we have

\langle f(tm+1), \phi \rangle xv \geq \langle f(tm), \phi \rangle xv +\Delta t \langle f(tm), \scrP \phi \rangle xv  - \Delta t2 c3\| \phi \| \infty .(3.10)

Combining (3.10) with (3.8), we obtain that for any n\geq 0,

em+1
\phi \leq em(I+\Delta t\scrP )\phi +\Delta t2 (c1\| \scrT 1\phi \| \infty + c2\| \scrT 2\phi \| \infty + c3\| \scrT 3\phi \| \infty ) ,(3.11)

where the operators \{ \scrT i\} are defined as

\scrT 1\phi :=\nabla x (\sigma \scrL [\phi ]) , \scrT 2\phi :=\nabla 2
x\phi , \scrT 3\phi := \phi .(3.12)

A key observation is that \scrT i(\scrP \phi ) =\scrP (\scrT i\phi ), 1\leq i\leq 3.
Since (3.11) applies to any m= 0,1,2, . . . ,M  - 1, we have that

em+1
\phi \leq em(I+\Delta t\scrP )\phi +\Delta t2

3\sum 
i=1

ci\| \scrT i\phi \| \infty 

\leq em - 1
(I+\Delta t\scrP )2\phi +\Delta t2

3\sum 
i=1

ci (\| \scrT i\phi \| \infty + \| (I +\Delta t\scrP )(\scrT i\phi )\| \infty )

\leq em+1 - k
(I+\Delta t\scrP )k\phi 

+\Delta t2
3\sum 

i=1

ci

k - 1\sum 
q=0

\| (I +\Delta t\scrP )q(\scrT i\phi )\| \infty \forall k= 1, . . . ,m+ 1.(3.13)

It is straightforward to prove (3.13) by induction. For 0\leq q\leq m+ 1, we have

e0(I+\Delta t\scrP )q\phi =\BbbE 0[((I +\Delta t\scrP )q\phi )(x0, v0)] - 
\int 
f(0, x, v) ((I +\Delta t\scrP )q\phi )(x, v)dxdv= 0.

Moreover, when \Delta t is small,

(I +\Delta t\scrP )q(\scrT i\phi )\approx \psi i(t= q\Delta t),

where \psi i solves \Biggl\{ 
\partial t\psi i(t, x, v) =\scrP \psi (x, v),
\psi i(t= 0, x, v) = \scrT i\phi (x, v)

(3.14)

for i = 1,2,3. Note that (3.14) is the same as (2.8), which is the regular RTE with
the velocity sign reversed. Thus, (3.14) enjoys all the properties of the forward RTE
(1.1). We then have the maximum principle [6], and thus

\| (I +\Delta t\scrP )q(\scrT i\phi )\| \infty \leq \| \scrT i\phi \| \infty \forall q\geq 0,
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MONTE CARLO GRADIENT FOR RTE 2759

and hence

\Delta t2
3\sum 

i=1

ci

k - 1\sum 
q=0

\| (I +\Delta t\scrP )q(\scrT i\phi )\| \infty \leq k\Delta t2
3\sum 

i=1

ci\| \scrT i\phi \| \infty .

Therefore, using (3.13) for k=m+ 1, we have

em+1
\phi \leq (m+ 1)\Delta t2

3\sum 
i=1

ci\| \scrT i\phi \| \infty \leq (m+ 1)C1\Delta t
2,

where C1 is defined in (3.5). The same analysis applies to em+1
 - \phi with precisely the same

upper bound (m+1)C1\Delta t
2. Since em+1

 - \phi = - em+1
\phi , we have | em+1

\phi | < (m+1)C1\Delta t
2.

Inductively, Lemma 3.1 allows us to arrive at Proposition 3.2. It is essentially the
first bullet point of Theorem 2.1, and we spell out the constant dependence.

Proposition 3.2. Given a fixed time T \geq 0, M \in \BbbN , and \Delta t = T/M , for any
\phi \in \Phi , we have

\bigm| \bigm| eM\phi \bigm| \bigm| \leq C1\Delta t, where e
M
\phi is defined in (3.3) and C1 is defined in (3.5).

Proof. Recall that \BbbE M includes all the randomness along the trajectory to obtain
the final-time particle (xM , vM ). Based on Lemma 3.1, we obtain an upper bound for
eM\phi by setting m=M and T =M\Delta t.

We should note that though Proposition 3.2 is formulated for a one-particle sys-
tem, due to the fact that \sanse MN,\phi is the simple N -average of \sanse M1,\phi , the mean is preserved,
and the extension to the many-particle system is trivial. This concludes (2.6) in
Theorem 2.1.

3.1.2. Many particles. Using formula (3.1), we view \sanse mN,\phi as the average of
many independent and identically distributed (i.i.d.) samples drawn according to the
distribution of \sanse m1,\phi . Thus, we can directly apply the concentration tail bound. To do
so, we first cite the famous Bernstein inequality.

Theorem 3.3 (Bernstein inequality). Let x1, . . . , xN be i.i.d. real-valued samples
of a random variable X, whose expectation and variance are \mu = \BbbE [X] and \sigma 2 =
Var[X]. Assume that there exists b such that | X  - \mu | \leq b almost surely. Then for any
t > 0, we have

\BbbP 

\Biggl( 
1

N

N\sum 
n=1

xn  - \mu \geq t

\Biggr) 
\leq exp

\Biggl( 
 - Nt2

2
\bigl( 
\sigma 2 + 1

3bt
\bigr) \Biggr) .(3.15)

According to (3.15), to control the tail of \sanse mN,\phi , we need to give an estimate on
the variance (\sigma 2 above) and the range (b above). These bounds are presented in the
following lemma.

Lemma 3.4. Let \sanse m1,\phi be defined in (2.5) with \sansf m1 computed through Algorithm 2.1.
Then \sanse m1,\phi has a bounded range and bounded variance. In particular, we have the
following, for all m\leq M and \phi \in \Phi :

\bullet The range of the error term is bounded:

| \sanse m1,\phi | \leq 2\| \phi \| L\infty 
x,v
.(3.16)

\bullet The variance is bounded:

Var[\sanse m1,\phi ]\leq C2,(3.17)

where C2 depends on \| v\| L\infty (\Omega ), \| \sigma \| L\infty , T , and \| \phi \| W 1,\infty 
x,v

.
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2760 QIN LI, LI WANG, AND YUNAN YANG

Proof. To show (3.16), recall

\sanse m1,\phi = \phi (xm, vm) - 
\int 
f(tm)\phi (x, v)dxdv.

Then we have \bigm| \bigm| \sanse m1,\phi \bigm| \bigm| \leq \bigm| \bigm| \phi (xm, vm)
\bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int f(tm)\phi (x, v)dxdv

\bigm| \bigm| \bigm| \bigm| 
\leq \| \phi \| L\infty 

x,v
+ \| \phi \| L\infty 

x,v

\int 
f(tm, x, v)dxdv= 2\| \phi \| L\infty 

x,v
,

where we have used the fact that f(tm) is nonnegative and integrates to one thanks
to the mass conservation.

Since we have just proved (3.16) which indicates | \BbbE [\sanse m1,\phi ]| 2 \leq 4\| \phi \| 2L\infty 
x,v

, we will

show the boundedness of the second-order moment V m
\phi := \BbbE [| \sanse m1,\phi | 2] to demonstrate

that the variance is bounded. Note that

V m
\phi =\BbbE 

\bigl[ 
| \langle \sansf m1  - f(tm), \phi \rangle xv| 2

\bigr] 
=\BbbE [| \phi (xm, vm) - \langle f(tm), \phi \rangle xv| 2].

Then the proof follows from induction. We begin with the following estimate:

V 0
\phi =\BbbE 0

\bigl[ 
| \phi (x0, v0) - \langle fin, \phi \rangle xv| 2

\bigr] 
=\BbbE 0

\bigl[ 
\phi (x0, v0)2  - 2\phi (x0, v0)\langle fin, \phi \rangle xv + \langle fin, \phi \rangle 2xv

\bigr] 
\leq \| \phi \| 2L\infty 

x,v
+ 2\| \phi \| 2L\infty 

x,v

\int 
findxdv+ \| \phi \| 2L\infty 

x,v

\biggl( \int 
findxdv

\biggr) 2

= 4\| \phi \| 2L\infty 
x,v
,

(3.18)

where we use the nonnegativity of fin and the fact that its mass equals one. We also
show below that V m

\phi does not grow fast in m. For any m\geq 0,

V m+1
\phi 

=\BbbE m+1
\bigl[ 
| \phi (xm+1, vm+1) - \langle f(tm+1), \phi \rangle xv| 2

\bigr] 
=\BbbE m+1

\Biggl[ 
| \phi (xm, vm) - \langle f(tm), \phi \rangle xv\underbrace{}  \underbrace{}  

A1

+ \phi (xm+1, vm+1) - \phi (xm, vm) + \langle f(tm) - f(tm+1), \phi \rangle xv\underbrace{}  \underbrace{}  
A2

| 2
\Biggr] 

=\BbbE m+1
\bigl[ 
| A1| 2

\bigr] 
+\BbbE m+1

\bigl[ 
| A2| 2

\bigr] 
+ 2\BbbE m+1 [A1A2]

= V m
\phi +\BbbE m

\bigl[ 
\BbbE \eta m+1\BbbE pm+1

\bigl[ 
| A2| 2

\bigr] \bigr] 
+ 2\BbbE m

\bigl[ 
A1\BbbE \eta m+1\BbbE pm+1 [A2]

\bigr] 
.(3.19)

First, using the mean-value theorem, we see that

\BbbE \eta m+1\BbbE pm+1 [A2]\leq \Delta t\| v \cdot \nabla x\phi + \sigma \scrL [\phi ]\| \infty \| f(t= \xi ,x, v)\| 1
+
\Bigl( 
1 - e - \sigma (xm+1)\Delta t

\Bigr) 
\scrL [\phi ](xm+1)

+\Delta t\nabla x\phi (\xi x, v
m) \cdot vm,

\leq \Delta tC2(\| v\| L\infty (\Omega ),\| \sigma \| L\infty ,\| \phi \| W 1,\infty 
x,v

),

where tm \leq \xi \leq tm+1 and \xi x is between xm and xm+1. Thus,

2\BbbE m
\bigl[ 
A1\BbbE \eta m+1\BbbE pm+1 [A2]

\bigr] 
\leq \Delta tC2\BbbE m [A1]\leq C2\Delta t,
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MONTE CARLO GRADIENT FOR RTE 2761

where we have used (3.16). Next, we focus on \BbbE \eta m+1\BbbE pm+1

\bigl[ 
| A2| 2

\bigr] 
:

\BbbE \eta m+1\BbbE pm+1

\bigl[ 
| A2| 2

\bigr] 
=
\Bigl( 
1 - e - \sigma (xm+1)\Delta t

\Bigr) \bigm| \bigm| \bigm| | \Omega |  - 1\langle \phi \rangle v(xm+1) - \phi (xm, vm) +\Delta t\langle \scrP \phi , f(t= \xi )\rangle xv
\bigm| \bigm| \bigm| 2

+\Delta t2e - \sigma (xm+1)\Delta t
\bigm| \bigm| \bigm| \nabla x\phi (\xi x, v

m) \cdot vm + \langle \scrP \phi , f(t= \xi )\rangle xv
\bigm| \bigm| \bigm| 2

\leq \Delta tC2(\| v\| L\infty (\Omega ),\| \sigma \| L\infty ,\| \phi \| W 1,\infty 
x,v

).

As a result,

\BbbE m+1
\bigl[ 
| A2| 2

\bigr] 
\leq \Delta tC2

\Bigl( 
\| v\| L\infty (\Omega ),\| \sigma \| L\infty ,\| \phi \| W 1,\infty 

x,v

\Bigr) 
.(3.20)

Combining the above two inequalities together, we have

V m+1
\phi \leq V m

\phi +C2\Delta t.(3.21)

Noting that Var[\sanse m1,\phi ] = V m
\phi  - | \BbbE [\sanse m1,\phi ]| 2, (3.17) is obtained by using the boundedness

of both terms from (3.16) and (3.21), with the constant depending on T and on the
arguments that are listed in (3.20). We abuse the notation and still call it C2.

We are now ready to show (2.7) in Theorem 2.1 through the following proposition.

Proposition 3.5. Let \sansf mN be the solution from running Algorithm 2.1 with MC
samples \{ (xmn , vmn )\} Mm=0. We claim it approximates f with high probability. Namely,
for small enough \epsilon ,\Delta t\ll 1, and any \phi \in \Phi , the chance of the weak error (2.5) being
bigger than \scrO (\epsilon +\Delta t) is exponentially small in N :

\BbbP 
\bigl( 
| \sanse mN,\phi | \geq \epsilon +C1\Delta t

\bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C1

\biggr) 
.

Proof. Calling Proposition 3.2 and Lemma 3.4, we have shown that for any \phi \in \Phi ,

\BbbE 
\bigl[ 
| \sanse m1,\phi | 

\bigr] 
\leq C1\Delta t, Var

\bigl[ 
\sanse m1,\phi 

\bigr] 
\leq C2, and | \sanse m1,\phi | < 2\| \phi \| L\infty 

x,v
.

Noting (3.1), we apply the Bernstein inequality (3.15) to have, for any \epsilon > 0,

\BbbP 
\bigl( 
| \sanse mN,\phi | \geq \epsilon +C1\Delta t

\bigr) 
\leq \BbbP 

\bigl( 
| \sanse mN,\phi  - em1,\phi | \geq \epsilon 

\bigr) 
\leq 2exp

\Biggl( 
 - N\epsilon 2

2C2 + 2\epsilon (2\| \phi \| L\infty 
x,v

+C1\Delta t)/3

\Biggr) 
.

We conclude the proof by absorbing the constants into C1 and setting \epsilon ,\Delta t to be
sufficiently small.

We have completed the proof of Theorem 2.1 with the constants' dependence
explicitly spelled out.

Remark 3. In the next section, we will directly show that the computation of the
Fr\'echet derivative is accurate. The proof for the solver for g, as expressed in (2.11), is
not directly needed, but we nevertheless make some comments here. As stated in Re-
mark 1, the derivation for the algorithm only comes from the conservation constraint
(2.9), but this constraint cannot fully represent the entire dynamical information of
the adjoint equation (2.1). To show that the solver is consistent with the adjoint
solver, we need to return to the equation and test \sansg  - g on a given smooth function
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2762 QIN LI, LI WANG, AND YUNAN YANG

\phi and trace the evolution of the error. This comes down to proving that the error is
not enlarged by much in every iteration:

\langle \sansg m+1
1  - g(tm+1), \phi \rangle xv  - \langle \sansg m1  - g(tm), \phi \rangle xv \sim 0.

While \langle \sansg m+1
1  - \sansg m1 , \phi \rangle xv = \phi (xm+1, vm+1) - \phi (xm, vm), which translates to the algo-

rithmic relation between (xm+1, vm+1) and (xm, vm), the term \langle g(tm+1)  - g(tm), \phi \rangle 
calls for the Taylor expansion in time for the PDE. Following the same strategy as
shown in Lemma 3.1, one can show that the same trajectory \{ (xm, vm)\} represents
the g dynamics backward in time. We should also note that unlike the MC solver
for f where each particle is i.i.d. sampled, initiated from the initial distribution to
represent fin, this solver for g encodes a nonuniform weight for each particle. The
particle takes on the value for g(T ). This difference is also recognized in different
particle methods; see [38].

3.2. Convergence of the gradient. This section is dedicated to Theorem 2.2,
which shows that Algorithm 2.2 provides an accurate numerical approximation to
the true numerical gradient (2.20) in its semidiscrete-in-time form. The proof is
conducted on the weak formulation to eliminate the complication from the delta
function. Namely, we will examine the difference between \frakG \phi and \frakG N,\phi , separately
defined in (2.12) and (2.15). Since they both consist of two terms, we show below
that \frakG m

N,i,\phi defined in (2.14) approximates \frakG m
i,\phi defined in (2.13) for i = 1,2 and for

all 1\leq m\leq M . The results are encapsulated in the following two propositions.

Proposition 3.6. If the initial condition fin and measurement d(x, v) are suffi-
ciently regular such that they both are C\infty 

c (\BbbR dx \times \Omega ), then for small \epsilon and \Delta t,

\BbbP 
\bigl( 
| \frakG m

N,1,\phi  - \frakG m
1,\phi | \geq \epsilon +C3\Delta t

\bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
, 1\leq m\leq M,

where

C3 =C3(\| fin\| W 2,\infty 
x L\infty 

v
,\| \sigma \| W 1,\infty 

x
,\| \phi \| W 2,\infty 

x,v
,\| d\| W 2,\infty 

x L\infty 
v
, T ).(3.22)

Proposition 3.7. Under the same assumptions with Proposition 3.6, we have

\BbbP 
\bigl( 
| \frakG m

N,2,\phi  - \frakG m
2,\phi | \geq \epsilon +C3\Delta t+ | ev| 

\bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
, 1\leq m\leq M,

where ev is the quadrature error in computing \langle \sansg n\rangle v.
Theorem 2.2 is then a direct corollary of the two propositions.

Remark 4. One strong requirement in Proposition 3.6 is the regularity assumption
on d(x, v). This assumption comes from the proof strategy where we view g\phi \in \Phi as
the test function and directly invoke the application of Theorem 2.1. One can relax
the assumption on the test function space \Phi in the previous theorem, and the relaxed
condition would carry over. It is an interesting question to study the minimum bound
for the regularity.

We now present the proofs for Propositions 3.6 and 3.7. Note that the two terms
\frakG m

N,1,\phi (resp., \frakG m
N,2,\phi ) and\frakG m

1,\phi (resp., \frakG m
2,\phi ) share the same format, so in the following,

we will only present details for \frakG m
N,1,\phi and \frakG m

1,\phi . Consider an auxiliary formulation

\~\frakG m
N,1,\phi =

1

N

N\sum 
n=1

\phi (xmn )g(tm, xmn , v
m
n ).(3.23)
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MONTE CARLO GRADIENT FOR RTE 2763

Then by the triangle inequality,

| \frakG m
N,1,\phi  - \frakG m

1,\phi | \leq | \frakG m
N,1,\phi  - \~\frakG m

N,1,\phi | + | \~\frakG m
N,1,\phi  - \frakG m

1,\phi | .(3.24)

Proposition 3.6 is a direct corollary of Lemmas 3.8 and 3.9 that give control over the
two terms on the right-hand side of (3.24), respectively.

The second term \~\frakG m
N,1,\phi  - \frakG m

1,\phi can be easily controlled since \phi (x)g(tm, x, v)\in \Phi .
We state Lemma 3.8 without proof.

Lemma 3.8. Under the same assumptions as in Proposition 3.6, we have

\BbbP 
\Bigl( 
| \~\frakG m

N,1,\phi  - \frakG m
1,\phi | \geq \epsilon +C3\Delta t

\Bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
, 1\leq m\leq M,(3.25)

where C3 is defined in Proposition 3.6.

The first term in (3.24) reads

\frakG m
N,1,\phi  - \~\frakG m

N,1,\phi =
1

N

N\sum 
n=1

\phi (xmn ) (\sansg n  - g(tm, xmn , v
m
n )) ,(3.26)

and we control it as follows.

Lemma 3.9. Under the same assumptions as in Proposition 3.6, we have

\BbbP 
\Bigl( 
| \frakG m

N,1,\phi  - \~\frakG m
N,1,\phi | \geq \epsilon +C3\Delta t

\Bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
, 1\leq m\leq M.

Proof. First note that due to (2.9), we always have\int 
xv

f(tM , x, v)g(tM , x, v)dxdv=

\int 
xv

f(tm, x, v)g(tm, x, v)dxdv, 1\leq m\leq M.

Again, we assume that g, as a solution of the adjoint RTE, is sufficiently smooth such
that g(t, \cdot , \cdot )\in \Phi . Then, using a variant of Proposition 3.2 (i.e., following the proof of
Proposition 3.2 but starting at time tm instead of t0), we have

\~\BbbE 
m
[g(tM , xMn , v

M
n )| (xmn , vmn )] = g(tm, xmn , v

m
n ) + e,

with | e| \leq C3\Delta t, and \~\BbbE 
m

defined as

\~\BbbE 
m
[ \cdot | (xmn , vmn )] =\BbbE \eta m+1\BbbE pm+1 \cdot \cdot \cdot \BbbE \eta M\BbbE pM [ \cdot | (xmn , vmn )].(3.27)

Recall the definition of \sansg n in (2.11). We then have

\~\BbbE 
m
[\sansg n] = g(tm, xmn , v

m
n ) + e.

With the same argument, we have that

\~\BbbE 
m
[\phi (xmn )\sansg n] = \phi (xmn )g(tm, xmn , v

m
n ) + e\phi (xmn ).(3.28)

Therefore, (3.26) becomes

\frakG m
N,1,\phi  - \~\frakG m

N,1,\phi =
1

N

N\sum 
n=1

\Bigl( 
\phi (xmn )\sansg n  - \~\BbbE 

m
[\phi (xmn )\sansg n] + e\phi (xmn )

\Bigr) 
, | e\phi (xmn )| \leq C3\Delta t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.2

.1
92

.8
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2764 QIN LI, LI WANG, AND YUNAN YANG

Note further from Lemma 3.4 (here we again alter the lemma by considering the
randomness starting at time tm+1, and the result remains the same) we have

Var[\phi (xmn )\sansg n] = \~\BbbE 
m
\Bigl[ 
\phi (xmn )\sansg n  - \~\BbbE 

m
[\phi (xmn )\sansg n]

\Bigr] 2
= \phi (xmn )2\~\BbbE 

m
\Bigl[ 
\sansg n  - \~\BbbE 

m
[\sansg n]

\Bigr] 2
\leq C3.

Then the final result follows from the Bernstein inequality (3.15).

The proof for Proposition 3.7 is almost identical. We present the details below.

Proof of Proposition 3.7. Parallel to (3.23), we define the auxiliary function

\~\frakG m
N,2,\phi =

1

N

N\sum 
n=1

\phi (xmn )\langle g(tm, xmn , \cdot )\rangle v

and thereby write

\frakG m
N,2,\phi  - \frakG m

2,\phi =\frakG m
N,2,\phi  - \~\frakG m

N,2,\phi + \~\frakG m
N,2,\phi  - \frakG m

2,\phi .

Here, the term \frakG m
N,2,\phi  - \~\frakG m

N,2,\phi has exactly the same estimate as in (3.25). For
\~\frakG m
N,2,\phi  - \frakG m

2,\phi , in addition to the error between \sansg n and g(tm, xmn , v
m
n ), there is an-

other error when computing the integral in v. More precisely, if \sansg mn = g(tm, xn, vn),
then \langle \sansg m\rangle v(\=x) is obtained via quadrature formula (2.18), which approximates the real
integral

\int 
g(tm, \=x, v)dv with a quadrature error denoted as ev. Now, we follow the

same proof as in Lemma 3.9 until (3.28), where we need to include this additional
quadrature error to get

\~\BbbE 
m
[\phi (xmn )\langle \sansg n\rangle v] = \phi (xmn )\langle g(tm, xmn , \cdot )\rangle v + e\phi (xmn ) + ev.

Therefore,

\frakG m
N,2,\phi  - \~\frakG m

N,2,\phi =
1

N

N\sum 
n=1

\Bigl( 
\phi (xmn )\langle \sansg n\rangle v  - \~\BbbE 

m
[\phi (xmn )\langle \sansg n\rangle v] + e\phi (xmn ) + ev

\Bigr) 
.

The same arguments as in Lemma 3.9 show that Var[\phi (xmn )\langle \sansg n\rangle v] \leq C3, and the
boundedness of \phi (xmn )\langle \sansg n\rangle v is a direct consequence of the fact that both \phi and \sansg are
bounded. Then by the Bernstein inequality, we have

\BbbP 
\Bigl( 
| \frakG m

N,2,\phi  - \~\frakG m
N,2,\phi  - C3\Delta t - ev| \geq \epsilon 

\Bigr) 
\leq 2exp

\Biggl( 
 - N\epsilon 2

2C3 + 2\epsilon (2\| \phi \| L\infty 
x,v

+C3\Delta t)/3

\Biggr) 
.

Then if \epsilon and \Delta t are small enough such that 2\epsilon (2\| \phi \| L\infty 
x,v

+C3\Delta t)/3<C3, we have

\BbbP 
\Bigl( 
| \frakG m

N,2,\phi  - \~\frakG m
N,2,\phi | \geq \epsilon +C3\Delta t+ | ev| 

\Bigr) 
\leq \BbbP 

\Bigl( 
| \frakG m

N,2,\phi  - \~\frakG m
N,2,\phi  - C3\Delta t - ev| \geq \epsilon 

\Bigr) 
\leq 2exp

\biggl( 
 - N\epsilon 

2

3C3

\biggr) 
.

4. Discretize-then-optimize framework. In this section, we consider the so-
called discretize-then-optimize (DTO) framework to compute the gradient of an RTE-
constrained optimization problem. We regard the MC method in Algorithm 2.1 as
our discretization of the forward RTE (1.1).
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MONTE CARLO GRADIENT FOR RTE 2765

Consider the objective functional

J =

\int \int 
r(x, v)f(T,x, v)dxdv,(4.1)

where J =\BbbE f(T,x,v) [r(x, v)] denotes the expectation of r with respect to the final-time
RTE solution f(T,x, v). The choice of J is only for notational convenience, and the
derivations shall easily apply to general objective functionals; see examples shown in
subsection 5.1. To carry on with the notation in subsection 3.1, the value in (4.1)
could be approximated by the MC quadrature

J \approx 1

N

N\sum 
n=1

r(xMn , v
M
n ) =:\scrJ .(4.2)

Since we have already established the convergence theory of the MC method for RTE
in subsection 3.1, here we assume that (2.3) holds and

(xmn , v
m
n )\sim f(tm, x, v) \forall n= 1, . . . ,N, m= 0, . . .M.

Given any test function \phi (v) in the admissible set (2.4), we have

\BbbE \eta m+1\BbbE pm+1 [\phi (v)| (xmn , vmn )](4.3)

= \alpha m+1
n \phi (vmn ) + (1 - \alpha m+1

n )
1

| \Omega | 

\int 
\Omega 

\phi (\eta )d\eta , m= 0, . . . ,M  - 1,

where \alpha m+1
n = exp( - \sigma (xm+1

n )\Delta t) = exp( - \sigma (xmn +\Delta tvmn )\Delta t). As a result, the final
objective functional can be expressed as sums of conditional expectations. We refer
the reader to [41] for more details regarding this technique. Next, we use the \~\BbbE 

m

notation from (3.27) for m= 0, . . . ,M  - 1, and (4.1) can be expressed as

J =
1

N

N\sum 
n=1

\BbbE (xm
n ,vm

n )\sim f(tm,x,v)

\Bigl[ 
\~\BbbE 
m
[r(xMn , v

M
n )]

\Bigr] 
, 0\leq m\leq M  - 1,(4.4)

as a result of the law of total expectations. Note that the above formula holds for any
m. We can further write J into J =

\sum N
n=1 Jn following (4.4), where

Jn =
1

N
\BbbE (xm

n ,vm
n )\sim f(tm,x,v) [\scrR m

n (xmn , v
m
n )] ,(4.5)

\scrR m
n (xmn , v

m
n ) = \~\BbbE 

m
[r(xMn , v

M
n )].(4.6)

The dependence of \scrR m
n (xmn , v

m
n ) on the coefficient function \sigma (x) is through the

evaluations of \{ \sigma (xm+1
n )\} where xm+1

n = xmn +\Delta t vmn , which are used in the acceptance-
rejection probabilities in each \BbbE pm+1 ; see (4.3). Note that \scrR m

n is conditioned on
(xmn , v

m
n ), so it can be seen as a function of (xmn , v

m
n ) and consequently a function of

\sigma (xm+1
n ) for a given function \sigma (x). Thus, using the score function [32, 31, 41], we can

express the derivative of \scrR m
n with respect to each \sigma (xm+1

n ) as

\partial \scrR m
n

\partial \sigma (xm+1
n )

= \~\BbbE 
m
\biggl[ 
\partial log\kappa (xm+1

n )

\partial \sigma (xm+1
n )

r(xMn , v
M
n )

\biggr] 
,(4.7)

where the probability for the rejection sampling and its score function are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.2

.1
92

.8
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2766 QIN LI, LI WANG, AND YUNAN YANG

\kappa (xm+1
n ) =

\Biggl\{ 
\alpha m+1
n if vm+1

n = vmn ,

1 - \alpha m+1
n otherwise,

\partial log\kappa (xm+1
n )

\partial \sigma (xm+1
n )

=

\Biggl\{ 
 - \Delta t if vm+1

n = vmn ,

\Delta t
\alpha m+1

n

1 - \alpha m+1
n

otherwise.

Using the same trajectories from the MC solver for the forward RTE (see Algorithm
2.1), we obtain samples \{ \widehat \scrR m

n \} M - 1
m=0 based on (4.6), and the Monte Carlo gradient

\{ \widehat \scrG m
n \} M - 1

m=0 based on (4.7), respectively, where

\widehat \scrR m
n = r(xMn , v

M
n ), \widehat \scrG m

n =

\left\{    - r(xMn , vMn )\Delta t if vm+1
n = vmn ,

r(xMn , v
M
n )

\alpha m+1
n \Delta t

1 - \alpha m+1
n

otherwise
(4.8)

for all m= 0, . . . ,M  - 1.
Based on (4.5) and (4.6), we can also treat \{ 1

N
\widehat \scrR m
n \} M - 1

m=0 as samples of Jn. Given
the same RTE particle trajectories obtained from Algorithm 2.1, \{ (xmn , vmn )\} Mm=0, the
following holds for any m= 0, . . . ,M  - 1:

J =

N\sum 
n=1

Jn
sample (4.5)

\approx 1

N

N\sum 
n=1

\scrR m
n

sample (4.6)
\approx 1

N

N\sum 
n=1

\widehat \scrR m
n ,

based on (4.2)
\approx \scrJ =

1

N

N\sum 
n=1

r(xMn , v
M
n ).

Thus, the Monte Carlo gradient of \scrJ with respect to \sigma (xm+1
n ) can be approximated

by

\partial \scrJ 
\partial \sigma (xm+1

n )
\approx 1

N

N\sum 
n=1

\partial \scrR m
n

\partial \sigma (xm+1
n )

=
1

N

\partial \scrR m
n

\partial \sigma (xm+1
n )

\approx 1

N
\widehat \scrG m
n \forall m,(4.9)

since \scrR m
i does not depend on \sigma (xm+1

n ) if i \not = n \forall m. Combining (4.9) with (4.8), we
obtain a Monte Carlo gradient formula for \partial \scrJ 

\partial \sigma (xm+1
n )

.

However, it is worth noting that

\partial \scrJ 
\partial \sigma (xm+1

n )
\not = \delta J

\delta \sigma 
(xm+1

n ).(4.10)

The left-hand side gradient treats \sigma (xm+1
n ) as a single parameter, and therefore the

effective parameters are a collection of MN number of scalars, \{ \sigma (xm+1
n )\} , where

n = 0, . . . ,N and m = 0, . . .M  - 1. On the other hand, the right-hand side is a
functional derivative with respect to the parameter function \sigma (x) (the same with the
OTD derivative (2.2)) evaluated at x= xm+1

n . We use the following example to show
how to relate both sides of (4.10).

Consider a separate mesh grid \{ \=xj\} in the spatial domain, and Qj is a small
neighborhood of \=xj for each j. Consider a perturbed parameter function \sigma (x)+\delta \sigma (x),
where \delta \sigma (x) = 1x\in Qj

\epsilon for some small constant \epsilon . We then have

J(\sigma + \delta \sigma ) - J(\sigma )\approx 
\int 
x

\delta J

\delta \sigma 
(x)\delta \sigma (x)dx= \epsilon 

\int 
Qj

\delta J

\delta \sigma 
(x)dx.(4.11)
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MONTE CARLO GRADIENT FOR RTE 2767

Algorithm 4.1 The particle-based DTO approach for gradient computation.

1: Given cell centers \{ \=xj\} where we want to evaluate the gradient (2.2).
2: Implement Algorithm 2.1 to solve the forward RTE (1.1) and store the

trajectories \{ (xmn , vmn )\} in memory where m= 0, . . . ,M and n= 1, . . . ,N .

3: Compute the objective function (4.2) based on \sansf M and evaluate \widehat \scrG m
n following

(4.8) for all m and n.
4: Evaluate the gradient at x= \=xj following (4.13).

On the other hand, with \scrJ (\sigma ) denoting the value (4.2) calculated with a given pa-
rameter function \sigma , we have the following based on (4.9):

\scrJ (\sigma + \delta \sigma )  - \scrJ (\sigma )\approx 
N\sum 

n=1

M - 1\sum 
m=0

\partial \scrJ 
\partial \sigma (xm+1

n )
\delta \sigma (xm+1

n )\approx \epsilon 
1

N

N\sum 
n=1

M - 1\sum 
m=0

1xm+1
n \in Qj

\widehat \scrG m
n .

(4.12)

Combining the last terms in (4.11)--(4.12) and assuming the approximated gradient
function \delta J

\delta \sigma is piecewise constant on \{ Qj\} , we have

\delta J

\delta \sigma 
(\=xj) | Qj | \approx 

\int 
Qj

\delta J

\delta \sigma 
(x)dx\approx 1

N

N\sum 
n=1

M - 1\sum 
m=0

1xm+1
n \in Qj

\widehat \scrG n
i .

Finally, we may approximate the gradient using values of (4.8) by

\delta J

\delta \sigma 
(\=xj)\approx 

1

| Qj | 
1

N

N\sum 
n=1

M - 1\sum 
m=0

1xm+1
n \in Qj

\widehat \scrG m
n

(4.13)

=
1

| Qj | 
\Delta t

N

N\sum 
n=1

M\sum 
m=1

1xm
n \in Qj

r(xMn , v
M
n ) \xi mn , where \xi mn =

\Biggl\{ 
 - 1 if vmn = vm - 1

n ,
\alpha m

n

1 - \alpha m
n

otherwise.

Similar to the particle-based OTD approach presented in Algorithm 2.2, sorting is
also needed in computing (4.13) for all particles in the long time horizon and leads
to \scrO (NM(logN + logM)) complexity. Note that this complexity can be reduced to
\scrO (NM(logN)) if one sorts the particles at each time step instead of doing it all at
once in the end, which reduces it to the same complexity as for the OTD approach.

We summarize steps of this particle-based DTO approach for gradient calculation
in Algorithm 4.1.

5. Numerical examples. In this section, we present a few numerical tests to
illustrate the gradient computed by particle methods following the OTD and DTO
approaches presented in sections 2 and 4. We will refer to these methods as P-OTD
and P-DTO in this section. As a reference, we will use a forward Euler scheme along
with an upwind spatial discretization for both forward and adjoint equations. Details
are provided in Appendix A. We remark that the gradient calculation based on the
finite-volume method (FVM) also belongs to the OTD approach for which we use a
consistent finite-volume upwind scheme (adjoint with respect to the FVM for solving
(1.1)) to discretize the adjoint equation (2.1). Thus, it also coincides with what one
would get from the DTO approach, with the discretization being the FVM.
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2768 QIN LI, LI WANG, AND YUNAN YANG

5.1. Inverse problem. First, we consider a setup based on inverse data match-
ing problems similar to the one described in subsection 1.1. We measure the spatial-
domain density at the final time T , and the reference probability density function is
d(x). For simplicity, we choose the L2-based objective functional

J1(\sigma ) =
1

2

\int 
D

| \rho T (x) - d(x)| 2dx, \rho T (x) =
1

| \Omega | 

\int 
\Omega 

f(T,x, v)dv,(5.1)

where other proper metrics and divergence for the probability space could also be
considered.

It is worth noting that (5.1) is different from (1.3). Recall in section 2 where we
use the method of Lagrange multipliers to derive the equation for g shown in (2.1).
The final condition for g will change with respect to the functional J evaluated at
the final-time RTE solution f(T,x, v), while the back-propagation rule for g (i.e., the
PDE itself) is independent of the choice of J . Hence, the final-time condition of g for
the objective function J1 should be

g(T,x, v) = - \delta J1
\delta f(T,x, v)

= | \Omega |  - 1 (d(x) - \rho T (x)) ,

which is constant in v.
In a one-dimensional (1D) setting, we consider the spatial domain D = [ - 2,2]

and the velocity domain \Omega = [ - 1,1], with the periodic boundary condition on D. We
run the forward RTE (1.1) on the time interval [0, T ] where T = 2. The step size
\Delta t= 0.01 in both FVM and P-OTD. The initial distribution is

fin(x, v) = 2\pi  - 1
2 exp( - 4x2),

which is constant in v, and the measurement density is

d(x) =
\surd 
5\pi  - 1

2 exp( - 5| x - 0.6| 2).

Note that
\int \int 
fin(x, v)dxdv= 2 and

\int 
d(x)dx= 1. We evaluate the gradient at \sigma (x) = 2

for any x\in D. We use the test function \phi (x) = | \Delta x|  - d1Q(\=x,\Delta x)(x) for \=x at grid points
where the FVM gradient is evaluated. We define the weak formulation of the true
gradient

\frakG (\=x) :=

\biggl\langle 
\delta \frakL 

\delta \sigma 
,

1

| \Delta x| d
1Q(\=x,\Delta x)

\biggr\rangle 
x

,(5.2)

which is approximated by the computed FVM gradient.
In Figure 1(a), we illustrate the gradients computed by FVM, P-OTD (using

N = 106 particles), and P-DTO (using N = 106 particles), evaluated at different
grid points \{ \=xj\} . The P-OTD gradient is computed following (2.16), while the P-
DTO gradient is computed by adapting the formula (4.13) for the particular objective
function (5.1). We define E(\=x) =\frakG N (\=x) - \frakG (\=x), and in Figure 1(b), we show a log-log
plot of \| E(\=x)\| 2 with respect to the variable \=x as the number of particles N used in
P-OTD increases. It reflects the difference in the weak form of the gradient between
the reference and the one computed from P-OTD. The error decay demonstrates the
expected MC error of \scrO (1/

\surd 
N), as proved in Theorem 2.2.

In a two-dimensional (2D) setting, we consider spatial domain D = [ - 1,1]2 and
velocity domain \Omega = \BbbS 1, again with the periodic boundary condition on D. We
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MONTE CARLO GRADIENT FOR RTE 2769

(a) P-OTD and FVM gradients (b) The 2-norm of GN (x̄) − G(x̄)

Fig. 1. Comparison among the gradients calculated by FVM, P-OTD, and P-DTO for the
objective function (5.1) in a 1D setting. (a) Illustration of the three gradients using N = 106

particles in P-OTD and P-DTO. (b) The 2-norm error of E(\=x) :=\frakG N (\=x) - \frakG (\=x) as a function of \=x
with respect to the number of particles N in P-OTD, where \frakG N (\=x) is defined in (2.16) and the true
(weak-form) gradient \frakG (\=x) given in (5.2) is approximated by the FVM gradient.

(a) FVM gradient (b) P-OTD gradient (c) P-DTO gradient

Fig. 2. Comparison between the gradients calculated by (a) FVM, (b) P-OTD, and (c) P-DTO
methods for the objective function (5.1) in a 2D setting described in subsection 5.1. The number of
particles in P-OTD and P-DTO is N = 106.

parameterize the velocity using the polar coordinate, v = [cos\theta , sin\theta ]\top , \theta \in [ - \pi ,\pi ].
The initial distribution is

fin(x, v) = 4\pi  - 1 exp( - 4| x| 2),

which is again constant in v, and the measurement density is

d(x) = 5\pi  - 1 exp( - 5| x1  - 0.3| 2  - 5| x2 + 0.3| 2), x= [x1, x2]
\top .

Note that
\int \int 
fin(x, v)dxdv = 2\pi and

\int 
d(x)dx = 1. We evaluate the gradient at

\sigma (x) = 2 \forall x \in D. The time step \Delta t= 0.01 and the final time T = 0.5. The gradients
computed by the three methods are shown in Figure 2. We used N = 106 particles in
the P-OTD and P-DTO methods and plotted the averaged value from 100 i.i.d. runs
in Figures 2(a) and 2(b) to further reduce the random error by a factor of 10. We
observe that the P-DTO method introduces more variance in the gradient calculation
for this example.

5.2. Optimal control. In this subsection, we focus on a different objective
functional (4.1) which we will refer to as J2. It is often used in optimal control or
optimal design applications. Here, we measure the macroscopic quantity at the final
time T for function

r(x, v) = s(v)IE(x),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) 1D setting (b) 2D setting

Fig. 3. Illustration of approximated indicator function IE(x) in 1D (a) and 2D (b) settings.

(a) FVM vs. P-OTD (b) FVM vs. P-DTO

Fig. 4. Gradient comparisons among FVM, P-OTD, and P-DTO methods in a 1D setting for
the objective function J2. The number of particles in both particle methods is N = 106.

where IE(x) is a smooth approximation to the indicator function 1E(x) = 1x\in E for a
chosen measurement set E \subset D; see Figure 3 for illustrations of IE(x) in 1D and 2D
settings. Based on J2, the final condition of the adjoint variable g should be

g(T,x, v) = - \delta J2
\delta f(T,x, v)

= - r(x, v).

The initial conditions for the RTE remain the same as in the examples in subsec-
tion 5.1.

We use three methods to compute the gradient of J2 at \sigma (x) = 2: FVM, P-OTD,
and P-DTO. The first two methods follow the OTD approach since they discretize
the forward RTE (1.1) and the continuous adjoint equation (2.1), whose solutions are
plugged into (2.16) for gradient calculation. On the other hand, the P-DTO method
derived in section 4 follows the DTO approach, and it does not solve the adjoint
equation (2.1). Using the solution based on Algorithm 2.1 to the forward RTE (1.1)
and the history of rejection samplings therein, the gradient can be approximated by
formula (4.13).

In one dimension, we set s(v) = v2, T = 0.5, and \Delta t= 0.005. Figure 4 illustrates
the comparison among the three methods. In the 2D case, we consider the spatial
domain D = [ - 1.5,1.5]2 and the velocity domain \Omega = \BbbS 1, and set s(v) = | v1| 2, where
v = [v1, v2]

\top . The total simulation time T = 0.2, while \Delta t = 0.005. We show the
gradients calculated from the three methods in Figure 5. We further reduce the
variances in the P-OTD gradient by taking its averaged value after 100 i.i.d. runs.
We also average the P-DTO gradient based on 300 i.i.d. runs.

5.3. An inversion example. In this subsection, we present an inversion exam-
ple using the gradient compute from the OTD-based approach presented in Algorithm
2.2. The experimental setup is based on the 1D case in subsection 5.1, where we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MONTE CARLO GRADIENT FOR RTE 2771

(a) P-OTD (b) P-OTD (c) FVM

Fig. 5. Gradient comparisons among FVM, P-OTD, and P-DTO methods in a 2D setting for
the objective function J2. The number of particles in both particle methods is N = 106.

(a) convergence history (b) reconstructed σ(x) (c) simulated and reference data

Fig. 6. (a) The convergence history during the inversion process; (b) the comparison among
the initial guess, the inverted scattering coefficient, and the ground truth; (c) the simulated density
using the inverted coefficient and the reference data with respect to the true coefficient.

further parameterize the scattering coefficient \sigma (x) = c0 + c1 sin(x) + c2 sin(2x). We
employ this low-dimensional parameterization to reduce the number of local min-
ima in the optimization landscape for problem (5.1), not due to concerns from the
computational cost of the gradient calculation or optimization.

Using the gradient computed from the P-OTD method, we use the gradient de-
scent method with back-tracking line search to ensure that the objective function
monotonically decays along the iterations; see Figure 6(a) where the objective func-
tion is reduced to 0.1\% of its initial value. In Figure 6, we show the initial guess, the
inverted scattering coefficient, and the ground truth. Even though the reconstruction
result is slightly different from the truth, their corresponding densities, i.e., \rho T gener-
ated from the inversion and the ground truth, are very close, as shown in Figure 6(c).
It is a sign that the inverse problem under the current experimental setup is unsta-
ble. More data, rather than simply a final-time density \rho T , could help improve the
resolution of the reconstruction. It is also worth noting that when the reconstructed
\sigma is close to the truth, the random noise from the forward RTE MC solver starts to
affect the objective function as we see small fluctuations after 60 iterations. However,
this also means one does not have to worry about the random noise in the objective
function or the gradient computed from the MC methods when the reconstructed
coefficient is far from the truth since the data mismatch at that stage dominates the
objective function.

Appendix A. The finite volume scheme. We summarize the finite volume
scheme used to compute the reference solution. As an illustration, we only consider
the 1D case. Denote

fmi,j \approx f(tm, xi, vj), 0\leq m\leq M, 1\leq j \leq Nv,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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as the numerical approximation, and let \Delta x, \Delta t, and \Delta v be the corresponding mesh
size in x, t, and v, respectively. We consider the time domain [0, T ], the spatial
domain D = [ - 2,2], and the velocity domain \Omega = [ - 1,1]. Then M\Delta t = T , and
\Delta vNv = | \Omega | = 2, where T is the final time. We have the following discretization for
(1.1):

fm+1
i,j  - fmi,j +

\Delta t

\Delta x
v+j (f

m
i,j  - fmi - 1,j) +

\Delta t

\Delta x
v - j (f

m
i+1,j  - fmi,j) = \sigma i\Delta t

\bigl( 
| \Omega |  - 1\langle fmi,j\rangle  - fmi,j

\bigr) 
for 0\leq m\leq M  - 1 and 1\leq j \leq Nv, with initial condition

f0i,j = fin(xi, vj).

Here, vj =  - 1 + (j  - 1/2)\Delta v representing the cell center, and v+ = max\{ v,0\} ,
v - = min\{ v,0\} . The average in v is computed by a simple midpoint rule: \langle fni,j\rangle =\sum Nv

j=1 f
n
i,j\Delta v.

Writing down the discrete version of the objective function (taking (5.1) as an
example),

J =
\Delta x

2

\sum 
i

\bigl( 
di  - | \Omega |  - 1\langle fMi,j \rangle 

\bigr) 2
+\Delta x\Delta v

\sum 
i

M - 1\sum 
m=1

Nv\sum 
j=1

gm+1
i,j\biggl( 

fm+1
i,j  - fmi,j +

\Delta t

\Delta x
v+j (f

m
i,j  - fmi - 1,j) +

\Delta t

\Delta x
v - j (f

m
i+1,j  - fmi,j) - \sigma i\Delta t

\biggl( \langle fmi,j\rangle 
| \Omega | 

 - fmi,j

\biggr) \biggr) 
,

the optimality condition leads to the following discretization for (2.1):

gmi,j - gm+1
i,j +

\Delta t

\Delta x
v+j (g

m
i,j - gmi+1,j) +

\Delta t

\Delta x
v - j (g

m
i - 1,j - gmi,j) = \sigma i\Delta t(| \Omega |  - 1\langle gm+1

i,j \rangle  - gm+1
i,j )

for M  - 1 \geq m \geq 0,1 \leq j \leq Nv, with final condition depending on the objective
function

gMi,j = | \Omega |  - 1
\bigl( 
di  - | \Omega |  - 1\langle fMi,j \rangle 

\bigr) 
,

where | \Omega | is the Lebesgue measure of the velocity domain. We use the periodic
boundary condition in x throughout the whole calculation. Then it is straightforward
to calculate the gradient as

\delta J

\delta \sigma i
=\Delta x\Delta v\Delta t

M - 1\sum 
m=1

Nv\sum 
j=1

fmi,j
\bigl( 
gm+1
i,j  - | \Omega |  - 1\langle gm+1

i,j \rangle 
\bigr) 
.

Similar to (4.10), \delta J
\delta \sigma i

above is not the same as \delta J
\delta \sigma (xi), but we can relate these two

by following procedures similar to those in (4.11)--(4.12). Assuming that the gradient
\delta J
\delta \sigma (x) is piecewise constant over the spatial cells \{ [xi  - \Delta x/2, xi +\Delta x/2)\} , we have
that

\delta J

\delta \sigma 
(xi)\approx 

1

\Delta x

\delta J

\delta \sigma i
=\Delta v\Delta t

M - 1\sum 
m=1

Nv\sum 
j=1

fmi,j
\bigl( 
gm+1
i,j  - | \Omega |  - 1\langle gm+1

i,j \rangle 
\bigr) 
.
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