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Abstract
This paper develops and analyzes a stochastic derivative-free optimization strategy. A key feature 
is the state-dependent adaptive variance. We prove global convergence in probability with alge-
braic rate and give the quantitative results in numerical examples. A striking fact is that conver-
gence is achieved without explicit information of the gradient and even without comparing differ-
ent objective function values as in established methods such as the simplex method and simulated 
annealing. It can otherwise be compared to annealing with state-dependent temperature.

Keywords Derivative-free optimization · Global optimization · Adaptive diffusion · 
Stationary distribution · Fokker-Planck theory

Mathematics Subject Classification 90C26 · 90C15 · 65K05

1 Introduction

The idea of using randomness to achieve global convergence in numerical optimization 
algorithms has been extensively explored. Different stochastic mechanisms have been 
developed in the literature based on time-dependent diffusion [5, 6, 12, 15, 17, 20]. In [9], 
we introduced a stochastic gradient descent method for global optimization with a time- 
and state-dependent variance. Through rigorous analysis of the discrete algorithm and sev-
eral numerical examples, we demonstrated the global convergence of the algorithm under 
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mild assumptions on the objective function. In this paper, we improve the result in [9] by 
considering a derivative-free version of the algorithm. We will prove that the new algo-
rithm can still achieve global convergence using a single particle performing Brownian 
motion where the diffusion coefficient is monotone with respect to the objective function.

To describe the algorithm, let 𝛺 ⊂ ℝd ( d ⩾ 1 ) be a smooth bounded domain and 
f (x)∶� ↦ ℝ a sufficiently regular objective function. We are interested in finding the 
global minima of f using iterative schemes of the form

where {�n}n⩾0 are i.i.d. standard normal random vectors, 𝜂 > 0 is the step size, and � con-
trols the variance of the randomness. Following our previous work [9], we consider adap-
tive schemes for selecting function-dependent � values for the iteration. To mimic the clas-
sical diffusion setup [17], and also to regularize the degeneracy as done in the literature 
[29, 34], we introduce a regularization 𝜀(t) > 0 with the property that �(t) → 0 as t → ∞ , 
and define the regularized diffusion coefficient � = �� as

where the exponent � ⩾ d∕2 (d being the dimension of the underlying space), 
a+ ∶= max{a, 0} , and f ∗

min
 is an approximation to fmin , the minimum value of the function 

f (x) on � defined by fmin ∶= min
x∈�

f (x) . When fmin is known a priori, we take f ∗
min

= fmin . 

When fmin is not known, we select f ∗
min

 in other ways (which we will describe in more 
detail later in the section on numerical simulations). For instance, one choice that has been 
explored a little bit in [9] and will be investigated more later is the case when f ∗

min
 is taken 

as the minimum value of f in part of the history of the iteration. That is

Without loss of generality, we assume that � is a d-dimensional cube with edge length �� , 
and consider the iteration with periodic boundary condition

with ei being the unit vector in direction i. We assume that f is periodically extended to ℝd 
to satisfy f (x + ��ei) = f (x) , for any i, 1 ⩽ i ⩽ d.

The scheme (1) is a derivative-free stochastic iteration, as it does not explicitly involve 
the derivative of the objective function f. In the rest of this work, we will show that algo-
rithm  (1) with appropriately selected �(t) on a continuous level and under reasonable 
assumptions can be globally convergent with an algebraic rate. To be more specific, we 
show a probability result of the form:

for some 𝜈, 𝜅′ > 0 ; see more details in Theorem 1 and Corollary 1. We will also provide 
some numerical examples in applications to show its practical relevance; see Sects. 2.3 and 
3. Moreover, while our primary focus is to study the derivative-free algorithm (1), we will 
see that adding explicit gradient information to the algorithm will significantly accelerate 
its convergence; see Fig. 1.

(1)Xn+1 = Xn +
√
� �

�
f (Xn)

�
�n, n ⩾ 0,

(2)��(f ) =

√
2
[(
f (x) − f ∗

min

)+]�
+ �(t) ,

(3)f ∗
min

∶= min
n−1−m⩽k⩽n−1

f (Xk), 1 ⩽ m ⩽ n − 1.

(4)Xn + ��ei = Xn, ∀n ⩾ 0, 1 ⩽ i ⩽ d

ℙ
(|Xt − x∗| > t−𝜈

)
≲ t−𝜅

�

, 𝛽 >
d

2
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There are many effective derivative-free methods in the literature for optimization [3, 
7, 23, 25]. While it is impossible to have an exhaustive list of successive methods in this 
direction, let us mention, as examples, the Nelder-Mead (NM) method [24, 26, 28], which 
performs a direct search in the parameter space using function value comparison, the 
genetic algorithm (GA) [18, 21, 27], the simulated annealing (SA) [5, 8, 17, 20, 22], the 
particle swarm optimization (PSO) method [31, 33], and the consensus-based optimiza-
tion method [12, 35]. Different variations of such methods have been proposed to solve 
problems with different features. Interested readers are referred to [1, 7, 23] and references 
therein for an overview of some of the recent developments in the field. Let us emphasize 
that some of the methods mentioned above aim at local optimization, and most of them 
include gradient information implicitly, for instance, by utilizing the difference of objective 
function values at two different points of the parameter space in the design of the algo-
rithms. However, the scheme (1) does not involve such gradient information in its form. It 
can be seen as a variant of the Brownian motion where the diffusion coefficient is chosen to 
depend on the current value of the objective function.

The rest of the paper is structured as follows. In Sect.  2, we present a convergence 
theory for the algorithm in the continuous limit. We use a regularized version of (2) and 
assume the value of the global minimum of the objective function is known. In Sect. 2.3, 
we provide numerical simulations to validate this convergence result. We discuss the algo-
rithm in more practical settings in Sect. 3 for cases where the gradient information can be 
added, and the objective function value at the global minimum is unknown a priori. We 
also point out in Sect. 4 the close connection as well as main differences of scheme (1) to 
our previous work of [9]. Concluding remarks are presented in Sect. 5.

2  Asymptotic Behavior via the Fokker‑Planck Equation

We are interested in obtaining a systematic understanding of the algorithm (1). As a start-
ing point, we will analyze this iterative scheme in the continuous limit (whose existence we 
formally assume, for instance, when � → 0 at a proper rate). The iteration is described by 
the stochastic differential equation (SDE)

(5)dXt = �(f ) dWt,

min

Fig. 1  Log-log plots of convergence performance between  (1) and  (42). For both cases, we set 
Dn(Xn) = f (Xn)

2 and fmin = 0 is known a priori. We also consider different window size I for estimating the 
gradient in (41). The statistics are estimated by 103 i.i.d. runs
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where {Wt}t⩾0 is a standard d-dimensional Brownian motion. We formally introduce the 
generator L of the process {Xt}t⩾0 as

where Δ is the standard Laplacian operator in dimension d and the subscript “ per ” in 
C
2
per
(ℝd) is used to reflect the fact that functions in the space are �-periodic. Then the Fok-

ker-Planck equation for the distribution u(x, t) of the process is of the form

assuming that the initial distribution we started the process with, u0 , is also �-periodic.
The fact that �(f ∗

min
) = 0 means that the SDE (5), as well as the PDE (7), is degener-

ate. Moreover, as we will see later, our assumption on f (x) and our selection of � ⩾ d∕2 
allow singular measures to be admissible solutions to the Fokker-Planck equation  (7). 
These factors make it nontrivial to fully characterize the behavior of the process {Xt}t⩾0.

We denote by L� the generator associated with the process with �� in (2). That is,

We will see later through numerical simulations that the algorithm (1) with adaptive diffu-
sion (2) can be quite efficient in general.

While iteration (1) is derivative-free in nature as it does not explicitly have the gra-
dient of the objective function involved, gradient information is indeed encoded in the 
algorithm. This can be seen on the heuristic level from the Fokker-Planck equation (7). 
Indeed, after a little rearrangement, the equation can be written as

At a given function value f, the first three terms of this Fokker-Planck equation correspond 
to the SDE (5) with an additional drift term −∇� dt on the right-hand side. The drift term 
∇� = ��(f )∇f  (and 𝜎�(f ) > 0 under the assumptions) clearly depends on the gradient of the 
objective function. The last term, − 1

2
(Δ�)u , adds an absorption/generation mechanism in 

the process at locations where � is convex/concave.
We first provide some theoretical investigations of our algorithm in the case where 

the value of the global minimum of f, denoted by fmin , is known a priori. In this case, we 
take f ∗

min
= fmin in (2). We make the following assumptions on the objective function f. 

A1  The function f (x) is at least C2 and is �-periodic with a unique global minimizer 
x∗ ∈ � with fmin ∶= f (x∗) . Moreover, there is a gap � between the global minimum 
value fmin and other local minima of f (x).

A2  There exist r, a > 0 such that f (x) − fmin ⩽ a|x − x∗|2 on Br(x∗) ∶= {x ∈

ℝd∶ |x − x∗| < r} ⊂ 𝛺.
A3  There exists b > 0 such that f (x) − fmin ⩾ b|x − x∗|2 for all x ∈ �.

Remark 1 The rationale for making some of the assumptions in A1–A3 is mainly to sim-
plify the presentation, as it will be evident from the discussions in the rest of this section 

(6)L� ∶=
1

2
�2Δ�, � ∈ C

2
per
(ℝd),

(7)�tu = L
∗u ∶=

1

2
Δ(�2u

)
in ℝd × (0,+∞), u(x, 0) = u0 in ℝd,

(8)L� ∶= D�Δ, D� ∶=
1

2
�2
� =

(
(f (x) − f ∗

min
)+
)�

+ �.

(9)�tu = ∇ ⋅ (u∇�) +
1

2
�(f ) Δu −

1

2
(Δ�)u.
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that these assumptions can be relaxed significantly for the main results to remain valid. For 
example, the theoretical result will hold if we replace A1–A3 with the following.

B1  The function f (x) is �-periodic with K < +∞ global minimizers {xk} ⊂ 𝛺 with 
fmin ∶= f (xk) ,  for any k, 1 ⩽ k ⩽ K . Moreover, there is a gap � between the global 
minimum value fmin and other local minima of f (x).

B2  There exist r, a > 0 such that for each 1 ⩽ k ⩽ K , 
(
f (x) − fmin

)�

⩽ a|x − xk|d∗ on 
Br(xk) ∶= {x ∈ ℝd∶ |x − xk| < r} ⊂ 𝛺 for some d∗ ⩾ d.

B3  There exists b > 0 such that for each 1 ⩽ k ⩽ K , 
(
f (x) − fmin

)�

⩾ b|x − x∗|d∗ for all 
x ∈ � and some d∗ ⩾ d.

In particular, B2 and B3 say that the behavior of (f − fmin)
� is an essential component 

of the analysis. This makes the theory work for a larger class of objective functions. We 
will provide numerical simulations in Sect. 2.3 to illustrate the case with multiple global 
minimizers.

Our main results will be based on the analysis of the Fokker-Planck equation associated 
with the generator L� with regularization of the form:

for some 𝛼 > 0 . That is,

where all quantities involved are �-periodic, and D� is defined in (8). We are interested in 
solutions representing probability distributions, so we additionally require the normaliza-
tion condition

The main strategy for constructing a solution to (11) is based on the instantaneous equilib-
rium distribution of the problem with a fix �(t∗) for some t∗ . For that purpose, for any given 
t > 0 , we denote by ū(x, t), an �-periodic function, that solves

with the normalization condition ∫
𝛺
ū(x, t)dx = 1.

With these assumptions, we can prove the following results.

Theorem 1 Under Assumptions A1–A 3, let u and ū be solutions to (11) and (12), respec-

tively, for �(t) given in  (10). Take � ⩾
d

2
 and � ∈

(
0,

1

2

]
∩
(
0,

2�

d+3�

)
 . Then there exists 

t0 > 0 such that for all t > t0 , we have

(10)�(t) = (1 + t)−� , t ⩾ 0

(11)�tu = Δ
(
D�u

)
in ℝd × (0,+∞), u(x, 0) = u0(x) in ℝd,

∫�

u(x, t)dx = 1, ∀t ⩾ 0.

(12)Δ
(
D𝜀(x, t)ū(x, t)

)
= 0



 Communications on Applied Mathematics and Computation

1 3

where ‖ ⋅ ‖L2(�) denotes the weighted L2 norm with measure d� = D�(x, t) dx.

Theorem 1 yields the following corollary which states that the process {Xt}t⩾0 generated 
by (5) with �� given in (2) and � given in (10) converges in probability to the global mini-
mizer x∗ of f (x).

Corollary 1 Let 𝛽 > d

2
 . Then, under the same setting as in Theorem 1, for any 𝛿 > 0 , we 

have that

for all t > t0 . Moreover, if we take � = t−� with � such that 0 < 𝜈 < min{𝛾 , ( 1
2
−

d

4𝛽
)𝛼} , then 

we have

for all t > t0.

Remark 2 When � =
d

2
 , we obtain the standard logarithmic convergence as ℙ

(|Xt − x∗|
> 𝛿

)
≲ (log t)−1 after applying Theorem 1.

The rest of this section is devoted to the proof of these results.

2.1  Preliminaries in the Case of Fixed "

The solution ū of (12), which we refer to as the instantaneous equilibrium distribution, is 
the equilibrium solution for the problem (11) with a fixed 𝜀 > 0 . It is straightforward to 
verify that, when D−1

� ∈ L1(�) , ū is given as

Note that periodicity and non-negativity of ū(x) force out solutions of the form 
D−1

� (A ⋅ x + B) for some vector A and constant B.
We first show that ū(x) is well defined for any fixed 𝜀 > 0 . This requires us to show that 

Zū is finite, in which case ū(x) ⩾ 0 and ∫𝛺

ū(x)dx = 1 . We have the following lemma.

Lemma 1 Under Assumptions A1–A 3, for any given 𝜀 > 0 , we have that

with V� the volume of � . Moreover, when � is sufficiently small, we have that

(13)‖‖u(x, t) − ū(x, t)‖‖L2(𝜇) ≲ t−𝛾 , 𝛾 = 1 −

(
d

2𝛽
+

3

2

)
𝛼 > 0,

(14)ℙ
(|Xt − x∗| > 𝛿

)
≲ t−𝜅 , 𝜅 = min

{
𝛾 ,

(
1 −

d

2𝛽

)
𝛼

}

(15)ℙ
(|Xt − x∗| > t−𝜈

)
≲ t−𝜅

�

, 𝜅� = min

{
𝛾 − 𝜈,

(
1 −

d

2𝛽

)
𝛼 − 2𝜈

}

(16)
ū(x) = Z−1

ū
D−1

𝜀 = Z−1
ū

1�
f (x) − fmin

�𝛽

+ 𝜀

, Zū ∶= ‖D−1
𝜀 ‖L1(𝛺).

0 < Zū ⩽
5

2
V𝛺 𝜀−1
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for some positive constants C1 and C2 independent of �.

Proof Let r, � , a, and b be defined as in Assumptions A1–A3, and define � ∶= (f − fmin)
� . 

We first derive the upper bound to show that ū(x) is well-defined. We observe first, using 
the notation �⩽� ∶= {x∶�(x) ⩽ �} and 𝜙c

⩽𝜀 ∶= ({x∶𝜙(x) ⩽ 𝜀})c = {x∶𝜙(x) > 𝜀} , that

The first term is bounded by �−1VBr(x∗)
 with VBr(x∗)

 the volume of the ball Br(x∗) . By the 
assumption on f (x) , the set �⩽� is compact. Therefore, the second term is bounded by 
�−1VBr(x∗)

c∩�⩽�
⩽ �−1V� . To bound the last term, we use the assumptions on f to get

We can now combine the three terms to get the upper bound of Zū.
To derive the lower bounds in (17), we assume that 𝜀 < fmin + � . We observe from (18) 

that

Let r� be such that

Then, we have, by denoting cd =
π
1
2

Γ(
d

2
+1)

 (the volume of the unit ball in ℝd ), that

Moreover, when r𝜀 < r , we have that

(17)Zū ⩾

⎧
⎪⎨⎪⎩

C1 𝜀
−

2𝛽−d

2𝛽 , 𝛽 > d

2
,

C2 log
�

1

𝜀

�
, 𝛽 =

d

2

(18)

Zū = ∫𝛺

1

𝜙 + 𝜀
dx = ∫

Br(x∗)

1

𝜙 + 𝜀
dx + ∫

Br(x∗)
c

1

𝜙 + 𝜀
dx

= ∫
Br(x∗)

1

𝜙 + 𝜀
dx + ∫

Br(x∗)
c∩𝜙⩽𝜀

1

𝜙 + 𝜀
dx + ∫

Br(x∗)
c∩𝜙c

⩽𝜀

1

𝜙 + 𝜀
dx.

∫
Br(x∗)

c∩�c
⩽�

1

� + �
dx ⩽ ∫

Br(x∗)
c∩�c

⩽�

1

2�
dx ⩽

V�

2�
.

Zū ⩾ ∫
Br(x∗)

1

𝜙 + 𝜀
dx

= ∫
Br(x∗)∩𝜙⩽𝜀

1

𝜙 + 𝜀
dx + ∫

Br(x∗)∩𝜙
c
⩽𝜀

1

𝜙 + 𝜀
dx ⩾

1

2𝜀 ∫
Br(x∗)(r)∩𝜙⩽𝜀

dx +
1

2 ∫
Br(x∗)∩𝜙

c
⩽𝜀

1

𝜙
dx.

a�r2�� = �, or equivalently, r� = a
−1

2 �
1

2� .

∫
Br(x∗)∩𝜙⩽𝜀

dx =

{
VBr(x∗)

= cd r
d, r𝜀 ⩾ r,

V𝜙⩽𝜀
= cd r

d
𝜀 = cd a

−d

2 𝜀
d

2𝛽 , r𝜀 < r.

∫
Br(x∗)∩𝜙

c
⩽𝜀

1

𝜙
dx =∫

Br(x∗)∩Br𝜀
(x∗)

c

1

𝜙
dx ⩾ ∫

Br(x∗)∩Br𝜀
(x∗)

c

1

a𝛽 |x − x∗|2𝛽
dx

=
A(𝕊d−1)

a𝛽 ∫
r

r𝜀

sd−1−2𝛽ds =
A(𝕊d−1)

a𝛽

{
1

d−2𝛽
(rd−2𝛽 − r

d−2𝛽
𝜀 ), 𝛽 > d

2
,

log
r

r𝜀
, 𝛽 =

d

2
.
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Here, A(�d−1) denotes the area of the sphere �d−1 . We can now put these bounds together 
and utilize the fact that ∫

Br(x∗)∩𝜙
c
⩽𝜀

1

𝜙
dx > 0 when r� ⩾ r to finish the proof.

The above calculation shows that Zū , the integral of D−1
�  over � , blows up as � → 0 . 

This is a key feature needed for the distribution ū to concentrate on the global minimizer 
x∗ for sufficiently small � , as we prove in the next lemma.

Lemma 2 Under Assumptions A1–A 3, for any given function value � > fmin and 𝛿 > 0 , 
there exists 𝜀0 > 0 such that for any � ⩽ �0,

where ū , depending on � , is defined in (16).

Proof With the same notation �(x) ∶= (f (x) − fmin)
� , we observe that

Meanwhile, it is straightforward to see that

By the result of Lemma 1, we have that

with C1 and C2 given as in (17). It is then clear that we can select � = �0 small enough to 
make this term smaller than � . The rest then follows from the monotonicity of the bound 
in (19) with respect to �.

As we can see, Corollary  1, based on a finely-tuned time-dependent � , provides a 
more precise characterization of this result. It says that when we tune �(t) at the rate of 
t−� , we get that the rate of concentration is ≲ t−𝛾 for some 𝛾 > 0 depending on �.

The calculation in Lemma  2 also suggests that the distribution ū converges to the 
delta-measure at x∗ . This is indeed the case, as we see from the following lemma.

Lemma 3 Under Assumptions A1–A 3, we have that ū(x) → 𝛿(x − x∗) weakly as � → 0.

Proof Let �(x) ∈ C
∞(�) be a given function. We first assume 𝛽 > d

2 . Define � ∶=
2�−d

2�
 and 

take � ∈ (0, � ) . We then have, using the same decomposition as in the proof of the previous 
lemma, that

∫{x∶ f (x)⩽�}

ū(x) dx ⩾ 1 − 𝛿,

∫{x∶ f (x)⩽�}

ū(x) dx =
1

Zū ∫{x∶ f (x)⩽�}

1

𝜙 + 𝜀
dx = 1 −

1

Zū ∫{x∶ f (x)>�}

1

𝜙 + 𝜀
dx.

1

Zū ∫{x∶ f (x)>�}

1

𝜙 + 𝜀
dx ⩽

1

Zū ∫{x∶ f (x)>�}

1

𝜙(x)
dx

⩽
1

Zū ∫{x∶ f (x)>�}

1

(� − fmin)
𝛽
dx ⩽

1

Zū

V𝛺

(� − fmin)
𝛽
.

(19)
1

Zū

V𝛺

(� − fmin)
𝛽
⩽

V𝛺

(� − fmin)
𝛽

⎧⎪⎨⎪⎩

1

C1

𝜀
2𝛽−d

2𝛽 , 𝛽 > d

2
,

1

C2

�
log

1

𝜀

�−1

, 𝛽 =
d

2
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By Assumption A3, when � is sufficiently small, �(x) ⩽ �� implies that b|x − x∗|2 ⩽ ��∕� , 
that is |x − x∗| ⩽ b−1∕2��∕2� . This then implies that |�(x) − �(x∗)| ⩽ C|x − x∗| ⩽ C̃��∕2� 
for some positive constants C and C̃ . Therefore, the first term on the right-hand side can be 
bounded as

The second term on the right-hand side can be bounded as follows:

where we have used in lower bound (17) of Zū in the last step. Both terms go to 0 when 

� → 0 . Therefore, we have shown that ∫𝛺

𝜓(x)ū(x)dx − 𝜓(x∗) → 0 as � → 0 . This shows 

that ū(x) → 𝛿(x − x∗) weakly. The case of � = d∕2 can be proved in exactly the same way 
if we replace the set �⩽�� by the set �

⩽1∕
√
log(1∕�) in the above calculations. Indeed, when � 

is sufficiently small, �(x) ⩽ (log(1∕�))−
1

2 implies that |x − x∗| ⩽ b
−

1

2 (log(1∕�))
−

1

2� which 
then implies that |�(x) − �(x∗)| ⩽ C̃(log(1∕�))

−
1

2� (with C̃ the same as that in the case of 
𝛽 > d∕2 ). Therefore, we can bound the two terms in the decomposition (20) in this case, 
respectively, as

and

Both terms go to 0 when � → 0 . The proof is now complete.

(20)
∫𝛺

𝜓(x)ū(x)dx − 𝜓(x∗) =
1

Zū ∫𝜙⩽𝜀𝜂

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx +

1

Zū ∫𝜙c

⩽𝜀𝜂

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx.

�����
1

Zū ∫𝜙⩽𝜀𝜂

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx

�����
⩽

1

Zū ∫𝜙⩽𝜀𝜂

�𝜓(x) − 𝜓(x∗)�
𝜙(x) + 𝜀

dx

⩽ ‖𝜓(x) − 𝜓(x∗)‖L∞(𝜙⩽𝜀𝜂 )

1

Zū ∫𝜙⩽𝜀𝜂

1

𝜙(x) + 𝜀
dx

⩽ ‖𝜓(x) − 𝜓(x∗)‖L∞(𝜙⩽𝜀𝜂 )
⩽ �C𝜀

𝜂

2𝛽 .

������
1

Zū ∫𝜙c

⩽𝜀𝜂

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx

������
⩽
2‖𝜓‖L∞(𝛺)

Zū ∫𝜙c

⩽𝜀𝜂

1

𝜙(x) + 𝜀
dx

⩽
2‖𝜓‖L∞(𝛺)

Zū ∫𝜙c

⩽𝜀𝜂

1

𝜀𝜂
dx ⩽

2‖𝜓‖L∞(𝛺)

Zū

V𝛺

𝜀𝜂
⩽ C̄𝜀

2𝛽−d

2𝛽
−𝜂
,

������
1

Zū ∫𝜙
⩽1∕

√
log(1∕𝜀)

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx

������
⩽ ‖𝜓(x) − 𝜓(x∗)‖L∞(𝜙

⩽1∕
√
log(1∕𝜀)

⩽ �C(log(1∕𝜀))
−

1

2𝛽 ,

������
1

Zū ∫𝜙c

⩽1∕
√
log(1∕𝜀)

𝜓(x) − 𝜓(x∗)

𝜙(x) + 𝜀
dx

������
⩽

2‖𝜓‖L∞(𝛺)

Zū

V𝛺

(log(1∕𝜀))−
1

2

⩽ C̄(log(1∕𝜀))−
1

2 .



 Communications on Applied Mathematics and Computation

1 3

2.2  Proofs of Theorem 1 and Corollary 1

We now prove Theorem 1. We split the proof into a few steps.

Lemma 4 Let u and ū be solutions to (11) and (12), respectively, and s(t) ∶= ‖u − ū‖L2(𝜇) . 
Then there exists C > 0 such that

Proof We define v = u − ū and thus s(t) = ‖v‖L2(�) ∶=
� ∫

�
v2D�dx

� 1

2 . It is easy to see that 

v is �-periodic and we have, from (11) and (12), that v solves

Multiplying both sides by D�(x, t)v(x, t) , and integrating over the spatial domain � using 
the periodic boundary condition then leads to the identity

We first observe that term T1 is simply

For the term T2 , we observe from  (8) and  (10) that 
�D�

�t
=

d�(t)

dt
= −� (1 + t)−�−1 ⩽ 0 . 

Therefore, T2 ⩾ 0.
To estimate the term T3 , we will apply the weighted Poincaré inequality in Theorem A1. 

In our case, we consider the weight

in the A2 class (see Definition A1). We can find an upper bound of its A2 constant [w]2 as

where fmax = max
x∈�

f (x) , and the constant

(21)
ds

dt
⩽ −C𝜀2s −

√
V𝛺

d𝜀

dt
Z−1
ū

𝜀−
3

2 .

(22)𝜕tv(x, t) = Δ
(
D𝜀(x, t)v(x, t)

)
− 𝜕tū(x, t).

(23)

1

2
𝜕t

(
∫𝛺

D𝜀 |v|2dx
)

�������������������������
T1

+
1

2 ∫𝛺

(
−
𝜕D𝜀

𝜕t

)
|v|2dx

�����������������������������
T2

= −∫𝛺

|∇(D𝜀v
)|2dx

�����������������������
T3

−∫𝛺

D𝜀v ūtdx

�����������
T4

.

(24)T1 =
1

2
�t

�
‖v‖2

L2(�)

�
= s(t)

ds

dt
.

w(x) = D�(x, t)
−1 =

1

(f (x) − fmin)
� + �(t)

(25)

[w]2 = sup
Q⊂ℝd

(
1

VQ
∫Q

w(x) dx

)(
1

VQ
∫Q

w(x)−1 dx

)

⩽

max
x∈𝛺

w(x)

min
x∈𝛺

w(x)
=

(fmax − fmin)
𝛽 + 𝜀(t)

𝜀(t)
⩽

(fmax − fmin)
𝛽 + 𝜀(0)

𝜀(t)
= C𝛽 𝜀

−1,

(26)C� = (fmax − fmin)
� + �(0) = (fmax − fmin)

� + 1 = max
x∈�, t∈[0,∞)

D�(x, t)
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is independent of time t. Based on (A2), for the hypercube � and a Lipschitz function v 
satisfying ∫

�
vD−1

� dx = 0 , we have

where the constant C =
(
C2
d
�
2
�
C�

)−1 with ��, the edge length of the hypercube �, and Cd , 
the constant introduced in (A2). We therefore have

The last term T4 can be bounded from below as follows. We first rewrite the term using 
ū = ZūD

−1
𝜀  from (16):

where we have used the facts that 
dD�

dt
=

d�

dt
 and ∫�

v dx = 0 for any t > 0.

Using the decomposition v = v+ − v− , where v+ = max{v, 0} and v− = −min{v, 0} , we 

have that |D
1

2

� v| = D
1

2

� v
+ + D

1

2

� v
− . Moreover, it is easy to check that

where Dmax ∶= max
x∈�

D� , Dmin ∶= min
x∈�

D� , and d� = D� dx . This leads to

Finally, we combine all four terms in (23) to have T1 = T3 − T4 − T2 ⩽ T3 − T4 . The ine-
quality (21) then follows.

We are now ready to prove the main result Theorem 1.

Proof of Theorem 1 Using the lower bound on Zū given in Lemma 1, as well as the assump-
tion that �(t) = (1 + t)−� , we can further relax  (21) to obtain, after a change of variable 
1 + t → t,

∫�

|v|2D−1
� dx ⩽

1

C� ∫�

|∇v|2D−1
� dx,

T3 ⩽ − ∫�

|∇(D�v
)|2 �

D�

dx = −�∫�

|∇(D�v
)|2 D−1

� dx

⩽ − C�2 ∫�

|D�v|2 D−1
� dx = −C�2s(t)2.

T4 =∫𝛺

D𝜀v 𝜕t
(
Z−1
ū
D−1

𝜀

)
dx

=∫𝛺

v 𝜕t
(
Z−1
ū

)
dx − ∫𝛺

vZ−1
ū

dD𝜀

dt
D−1

𝜀 dx

=𝜕t
(
Z−1
ū

)
∫𝛺

v dx − Z−1
ū

d𝜀

dt ∫𝛺

D
1

2

𝜀 vD
−

3

2

𝜀 dx

= − Z−1
ū

d𝜀

dt ∫𝛺

D
1

2

𝜀 vD
−

3

2

𝜀 dx,

∫�

D
1

2

� vD
−

3

2

� dx ⩾ D
−

3

2

max ∫�

D
1

2

� v
+ dx − D

−
3

2

min ∫�

D
1

2

� v
− dx

⩾ −D
−

3

2

min
‖D

1

2

� v‖L1(�) ⩾ −

√
V�

�
3

2

‖v‖L2(�),

(27)T4 ⩾ Z−1
ū

d𝜀

dt
𝜀−

3

2

√
V𝛺 s(t).
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where C2 is a positive constant and � ⩾ d∕2.
Next, we find an upper bound for s(t). First, we discuss the case � ≠ 1∕2 . Define 

C� =
C

1−2�
 , and

where Γ(s, x) = ∫ ∞

x
ts−1e−tdt is the upper incomplete gamma function. Note that 

Γ(s, 0) = Γ(s) . The solution to the ODE s̄t = −Ct−2𝛼 s̄ + C2t
�𝛼−1 with the initial condition 

s(1) = s̄(1) is

If 1 − 2𝛼 < 0 (i.e., 𝛼 > 1∕2 ), we have

both converging to constants. From (29), s̄(t) converges to a constant and we do not have an 
upper bound decay for s(t) in this analysis framework.

If 1 − 2𝛼 > 0 (i.e., 0 < 𝛼 < 1∕2 ), we have y(t)
t→∞
������������������→ 0 exponentially. Since −C𝛼 t

1−2𝛼 < 0 
for t ⩾ 1 , h(t) is a complex-valued scalar with both the real and the imaginary parts going 
to −∞ as t → +∞ . It is worth noting that e−xΓ(s,−x) ≈ xs−1 when x is sufficiently large, so 
when t is large, we have

while y(t) = 1

2𝛼−1
e−C𝛼 t

1−2𝛼
< 0 based on its definition and C6 is some positive constant. 

Thus, s(t) ⩽ s̄(t) ≲ t(�+2)𝛼−1 . In order for the upper bound to decay to zero, we need 
(� + 2)𝛼 − 1 < 0 , i.e.,

When � = 1∕2 , we need to consider the ODE

(28)st ⩽ −C t−2�s + C2 t
��−1, t ⩾ 1, � =

d

2�
−

1

2
,

y(t) ∶=
1

2� − 1
exp

(
−
Ct1−2�

1 − 2�

)
=

1

2� − 1
exp

(
−C�t

1−2�
)
,

h(t) ∶= Γ

(
��

1 − 2�
,−C� t

1−2�

)
= ∫

∞

−C� t
1−2�

�
��

1−2�
−1
e−�d�,

C5 ∶= C2

(
C

2� − 1

) ��

2�−1

= C2

(
−C�

) ��

2�−1 ,

C3 ∶= C2

(
C

2� − 1

) ��

2�−1

Γ

(
��

1 − 2�
,

C

2� − 1

)
= C5 Γ

(
��

1 − 2�
,−C�

)
,

C4 ∶= (2� − 1)s(1) exp
(

C

1 − 2�

)
= (2� − 1)s(1) exp

(
C�

)
,

(29)s̄(t) = (C4 − C3)y(t) + C5 y(t) h(t) ⩾ s(t).

y(t)
t→∞
������������������→

1

2� − 1
, h(t)

t→∞
������������������→ Γ

(
��

1 − 2�

)

y(t) h(t) ≈
1

2� − 1

(
C� t

1−2�
) ��

1−2�
−1

= C6 t
(�+2)�−1,

0 < 𝛼 < min
(
1

2
,

1

� + 2

)
= min

(
1

2
,

2𝛽

d + 3𝛽

)
.
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where s(1) = s̄(1) as the initial condition. It has an analytical solution. We then have

If � =
d

2𝛽
−

1

2
< 0 , i.e., 𝛽 > d , we will have an energy decay when � = 1∕2.

To sum up, when � , � , and d are chosen to satisfy

we have

This completes the proof.

The energy estimate in Theorem 1 allows us to refine the result of Lemma 2. This is 
the result of Corollary 1. We now prove this corollary.

Proof of Corollary 1 For a given 𝛿 > 0 , we have, based on Assumption A3 and 
the lower bound estimations for Zū in Lemma  1, and after taking into account that 
�(t) = (1 + t)−� ∼ t−� for large t, that

On the other hand, we have

Therefore, based on the upper bound estimate for s(t) in Theorem 1, we have

where C1, C̄1 are positive constants, and � is defined in (14). Now if we take � = t−� with 
0 < 𝜈 < min{𝛾 , (1 − d

2𝛽
)
𝛼

2
} , then (31) simplifies to

where �′ is  defined in (15).

s̄t = −C t−1s̄ + C
2
t
�

2
−1
,

s(t) ⩽ s̄(t) =
2C2

2C + �
t
�

2 +
s(1)(2C + �) − 2C2

2C + �
t−C ≲ t

�

2 .

(30)� ∈
(
0,

1

2

]⋂(
0,

2�

d + 3�

)
,

s(t) ≲ t(�+2)𝛼−1 = t−𝛾 , 𝛾 = 1 − (� + 2)𝛼.

∫𝛺∩B𝛿 (x∗)
c

ū dx = Z−1
ū ∫𝛺∩B𝛿 (x∗)

c

1

D𝜀(x, t)
dx ⩽ Z−1

ū

V𝛺

b𝛿2
≲ (b𝛿2)−1t

𝛼( d

2𝛽
−1)

.

∫𝛺∩B𝛿 (x∗)
c

(u − ū)dx ⩽ ∫𝛺∩B𝛿 (x∗)
c

�v� dx ⩽
1√
b𝛿2 ∫𝛺∩B𝛿 (x∗)

c

D
1

2

𝜀 �v� dx

⩽

√
V𝛺√
b𝛿2

‖D
1

2

𝜀 v‖L2(𝛺) =

√
V𝛺√
b𝛿2

s(t).

(31)
ℙ
(
Xt ∉ B𝛿(x∗)

)
= ∫𝛺∩B𝛿 (x∗)

c

u dx = ∫𝛺∩B𝛿 (x∗)
c

(u − ū) dx + ∫𝛺∩B𝛿 (x∗)
c

ū dx

⩽ C1(b𝛿
2)−

1

2 t

(
d

2𝛽
+

3

2

)
𝛼−1

+ C̄1(b𝛿
2)−1t

𝛼
(

d

2𝛽
−1

)
≲ t−𝜅 ,

ℙ
(
Xt ∉ B𝛿(x∗)

)
⩽ C1b

−
1

2 t−(𝛾−𝜈) + C̄1b
−1t

−
[(

1−
d

2𝛽

)
𝛼−2𝜈

]
≲ t−𝜅

�

,
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2.3  Numerical Experiments

Next, we show a few numerical examples of global optimization to demonstrate the 
effectiveness of our proposed derivative-free algorithm.

We will consider minimizing the following objective function f (x) on the domain 
� = [0, 4]d , where

where f̄ = 2.345 5 ,  so that fmax = max
x∈[0,4]d

f (x) = 1 for any dimension d. There is a unique 

global minimum of f (x) at x∗ = [2,⋯ , 2]⊤ ∈ 𝛺 with the function value fmin = f (x∗) = 0 . 
The shapes of the objective function in dimension d = 1 and d = 2 are illustrated in Fig. 2.

Our numerical simulations are based on the discrete algorithm (1), where we fix the step 
size � to be a constant. The standard deviation for the noise is taken as the discrete equiva-
lence of (2), i.e.,

where c = 10−3 is a fixed scalar. This setup corresponds to the main results of the paper 
proved in Sect. 2. The update rule for the iterate is

where �n ∼ N(0, Id) , the standard normal distribution on ℝd with an enforced periodic 
boundary condition. The standard deviation �n , or equivalently, the diffusion coefficient, is 
both state- and time-dependent.

The convergence histories are shown in Fig. 3 for the case d = 2 with � = 2 , where we 
vary the value of the parameter � . Based on the log-log plots, we see that the choice of � 
directly affects the convergence speed in the discrete algorithm as the bigger the � , the 
faster the convergence. While we will discuss more on the case of � = 0 in Sect. 3.2, for the 
purpose of comparison, we include in Fig. 3 a plot for the case where the term � = 0 as the 
limit of � → ∞.

(32)f (x) =
1

d f̄

(
0.3|x − 2|2 −

d∑
i=1

cos(4xi − 8) + d

)
, x = [x1,⋯ , xd]

⊤,

(33)�n =

√
2
[(

(f (Xn) − fmin)
+

)�

+ �
]
, � = cn−� ,

(34)Xn+1 = Xn + �n�n,

1.0 1.0

Fig. 2  Optimization landscapes of the objective function f (x) in  (32) in dimension d = 1 (left) and d = 2 
(right)
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For comparison, we consider the SA method [22] to minimize the same objective 
function (32). The algorithm determines whether the next iterate (a close neighbor of the 
current state) is better or worse than the current iterate and then chooses the next one. If 
the new iterate yields a lower objective function value, it becomes the next iterate auto-
matically. Otherwise, the SA method accepts the next iterate (a worse point) based on an 
acceptance probability. Here, we choose the common acceptance probability function

where the temperature Tn decreases as n increases. The acceptance probability becomes 
smaller for the fixed function value gap f (Xn+1) − f (Xn) as n goes to infinity. This is 
commonly referred to as the cool-down process. In this comparison, we choose two dif-
ferent types of annealing schedule to decrease Tn : an algebraic decay Tn = 0.99n , and a 
logarithmic decay Tn = 1∕

√
log(n + 1) . In Fig. 4, we plot the same statistical estimates for 

ℙ(|Xn − �∗| > 0.1) , similar to Fig. 3. The plots show an interesting phenomenon: when the 
temperature Tn decays algebraically, the iterates are stuck at local minima after 104 itera-
tions; when the temperature decays as slowly as O(1∕

√
(log n) , there shows no sign of 

convergence within 105 iterations. This is a long-standing dilemma for stochastic global 
optimization algorithms: too-fast cooling results in local minimum trapping, while too-
slow cooling results in slow convergence. The state-dependent diffusion proposed in this 

(35)exp

(
−

1

Tn

(
f (Xn+1) − f (Xn)

))
,

Fig. 3  Convergence history of iteration (1) with � given in (33) in the case of minimizing f (x) of (32) in 
dimension d = 2 with � = 2 . Shown are results for different values of � after 105 iterations

1.00

0.90

0.80

Fig. 4  Convergence history of the SA algorithm [23] to minimize f (x) of  (32) in dimension d = 2 under 
two different annealing schedules for the temperature Tn defined in (35)
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work aims to speed-up global convergence by incorporating the objective function into the 
temperature decay.

3  Practical Generalizations

The numerical results we presented in the previous section verified our theoretical analysis 
in Sect. 2, where we assumed that the value of the global minimum of the objective func-
tion, fmin , is known and demonstrated that the algorithm could perform well in more com-
plex situations. In this section, we provide further discussions on practical situations under 
which our algorithm performs almost as well as in the ideal case.

We start with a numerical illustration for various cases regarding fmin and the value of � , 
which will be further discussed in Sects. 3.1 and 3.2, respectively. The left plots of Fig. 5 
show single-run trajectories of the cases � = 0 (top) and � ≠ 0 (bottom), respectively, under 
the setting that fmin is known (and f (x∗) = 0 ). The case of � = 0 is superior in stabilizing 
the iterates around the global minimum. The right plots of Fig. 5 are results on the trajec-
tory of one single run with � = 0 when fmin is unknown (and estimated with the method in 
Sect. 3.1). The iterates get stuck at a wrong position very quickly, showing that we cannot 
set � = 0 when fmin is unknown, in contrast to the two left plots. We will elaborate on these 
observations more in this section.

3.1  Estimating Optimal Objective Function Value

Previously, and also in the main theoretical results, we have used the assumption that the 
value fmin ∶= f (x∗) (but not the location x∗ ) is known a priori. This is often true in many 
applications (for instance, data matching) where fmin = 0 . When fmin is unknown, develop-
ing a convergence theory for the algorithm is much more challenging. The difficulty is that 
the above analysis is in the continuum, and the estimation on f (x∗) is inherently discrete. 

H T
m
in

Fig. 5  (a) The history of the iterates {Xn} from a single run when � = 0 (top) and � = cn−� (bottom), respec-
tively, with fmin given. (b) The trajectory of the iterates Xn , the estimated minimum value f n

min
 and the effec-

tive diffusion coefficient Dn(Xn) = (�n)
2∕2 from one single run with � = 0 and fmin unknown. The global 

minimum is [2, 2]⊤ in both cases
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However, with a little more effort in estimating fmin during the iteration, we can make our 
algorithm efficient under such a situation.

It is important to have the state-dependent term in the algorithm, which is the only com-
ponent that encodes any information regarding the objective function f (x) . We may con-
sider a different variant of (2) and (33):

The role of f n
min

 here is to approximate f (x∗) through the history minimum of the objective 
function values from the past iterates. We also need to have � ≠ 0 not only to avoid {Xn} 
stagnating at any history minimum rather than the global minimum but also to visit every-
where of the domain � ; see for a counterexample in Fig. 5b.

On the other hand, in the case of f (x∗) unknown, when we set � ≠ 0 but monotoni-
cally decaying as n becomes large, we observe in Fig. 6 the decay of ℙ(|Xn − x∗| > 0.1) 
as n increases, but much slower than the cases shown in Fig. 3 in which we assume to 
know f (x∗) = 0 a priori. In Fig. 7a, we present the history of f n

min
 and Xn from a single 

(36)

�n =

√
2
[(

f (Xn) − f n
min

)�

+ �
]
, where f n

min
∶= min

{
f (Xn), f

n−1
min

}
, � = cn−� .

Fig. 6  The convergence performance of (1) with the diffusion coefficient defined in (36) and � = 10−3n−� . 
The minimum objective function value f (x∗) is estimated by f n

min

T C

1.0

Fig. 7  (a) The history of the iterates {Xn} and {f n
min

} from a single run when � = 10−3n−0.6 in (36). (b) The 
comparison of convergence performances in terms of whether fmin = f (x∗) is known or needs to be esti-
mated using f n

min
 following (36). In both cases, we set � = 10−3n−0.6



 Communications on Applied Mathematics and Computation

1 3

run when � = 10−3n−0.6 . In Fig. 7b, we show a comparison regarding whether f (x∗) is 
known a priori or not where the convergence performances are estimated from 103 i.i.d. 
runs and � = 10−3n−0.6 in both cases.

The proposed algorithm (36) for estimating the optimal value of the objective func-
tion fmin is based on discrete f (Xn) values and does not fit well into the continuum 
style convergence proof. With increasing values of n, it is possible to approximate 
fmin = f (x∗) with increasing accuracy. In the numerical example related to Fig. 7a, the 
simple estimate (36) of f (x∗) was used. The figure shows the convergence to x∗ and the 
optimum estimate to f (x∗) . There are abnormal cases where the estimate  (36) would 
require very slow decay of �(t) , and for a rigorous convergence result, we adopt the 
same strategy, which we used in [9], of basing the hyperparameter estimates on extra 
sampling. If in the sequence in  (36) we add uniformly sampled values {Yn} from the 
domain � , we can guarantee almost-sure convergence of f (Yn) to the optimal value 
f (�∗) ; see Proposition 1.

Proposition 1 Assume that there is a subset 𝛺sc ⊆ 𝛺 on which the objective function f(x) is 
strongly convex and x∗ ∈ �sc . Define the monotone-decreasing sequence

where {Xn} are iterates from (34) with �n =
√

2(f (Xn) − f n
min

)� + 2� and {Yn} are uniform 

samples drawn from the domain � . Then we have f n
min

n→∞
�������������������→ f (�∗) almost surely.

Proof Let � be the largest positive constant such that 𝛺𝛿 ∶= {x∶ f (x) − f (x∗) ⩽ 𝛿} ⊆ 𝛺sc . 

Note that �� is nested between two ellipsoids centered at x∗ and the ratio |��|∕|�| ⩽ C�d∕2 
for some positive constant C [9, Eq. (3.22)]. Also, it is easy to see that

Therefore, we have

Since (37) holds for any 0 < 𝛿′ ⩽ 𝛿 , we conclude that f n
min

 converges to f (�∗) almost surely.

3.2  Regularization‑Free Algorithm

In this section, we discuss the case when � = 0 in (2). Based on the definition in (2), �(f ) is 
not integrable for � ⩾ d∕2 . This means that, mathematically, the process {Xt}t⩾0 can get arbi-
trarily close to the global minimizer but will never reach it unless X0 = �∗ . However, from a 
practical point of view, being arbitrarily close is sufficient.

Numerically, we still observe a rapid convergence of the discrete algorithm (1) to the global 
minimizer in this case, even though this “convergence” might not be in a strict mathematical 

f n
min

∶= min
{
f (Xn), f (Yn), f

n−1
min

}
, f 0

min
= min

{
f (X0), f (Y0)

}
,

f n
min

⩽ min
{
f (Y1), f (Y2),⋯ , f (Yn)

}
∶= M(n).

(37)

ℙ

(
lim
n→∞

f n
min

− f (�∗) > 𝛿
)
⩽ ℙ

(
lim
n→∞

M(n) − f (�∗) > 𝛿
)
= ℙ

(
∞⋂
n=0

{Yn ∉ 𝛺𝛿}

)

=

∞∏
n=0

ℙ(Yn ∉ 𝛺𝛿) ⩽ lim
n→∞

(
1 − C𝛿d∕2

)n
= 0.
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sense since we have finite spatial resolution when computing the distributions. To be more 
precise, we set

which is (2). In Fig. 8, we plot the convergence histories for d = 2 and � ranging from 0.5 
to 2, and we assume f ∗

min
= fmin = 0 is known. The probabilities in the y-axis are estimated 

using 103 i.i.d. runs while the x axis is the number of iterations. The initial guess is uni-
formly sampled from the domain � . It is worth noting that when 𝛽 < 1 =

d

2
 , there is no 

guarantee for convergence in probability since lim
𝜀→0

Zū < ∞ as defined in (16).
Next, we consider another optimization problem with four different global minima, 

whose optimization landscape is seen in Fig. 9a. We denote the global minimizers by 
x∗
1
= [2, 2]⊤ , x∗

2
= [−2,−2]⊤ , x∗

3
= [2,−2]⊤ , and x∗

4
= [−2, 2]⊤ . We implement the same 

algorithm with � = 0 and � = 4 , assuming again fmin = 0 is known. The convergence 
behavior is shown in Fig. 9b. We can see that there are equal probabilities of roughly 
25% for the iterate Xn to be in a close neighborhood of any of the four global minima for 
n large enough.

�n(Xn) =

√
2
[
(f (Xn) − f ∗

min
)+
]�
,

1.0

2.0

Fig. 8  Convergence history for minimizing (32) with � = 0 and d = 2 after 105 number of iterations

0.30

0.20

0.10

O C
N

Fig. 9  (a) An objective function landscape with four global minimizers labeled as x∗
1
= [2, 2]⊤ , 

x∗
2
= [−2,−2]⊤ , x∗

3
= [2,−2]⊤ , and x∗

4
= [−2, 2]⊤ ; (b) convergence performance (from 103 i.i.d. runs) of the 

proposed algorithm with � = 0 , � = 4 , and d = 2 after 105 number of iterations
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The numerical experiment in Fig.  3 shows that eliminating the regularization term 
𝜀 > 0 in the algorithm (33) gives a faster convergence rate than that with the regulariza-
tion term, at least for that particular objective function f. This requires that fmin = f (x∗) 
is known. With an unknown optimal objective function value, there is a clear risk of 
having the algorithm trapped in local minima; see Fig.  5b. The regularization-free 
method, i.e., � = 0 , works very well when the optimization landscape is convex or when 
f (x∗) is known.

Lack of theoretical understanding for the case of � = 0 . We currently have a minimal the-
oretical understanding of the � = 0 algorithm due to the strong degeneracy of the diffusion 
coefficient D in this case. The proof from Sect.  2 does not apply here because of the lack 
of appropriate Poincaré inequality in the strongly degenerate case, i.e., � ⩾ d∕2 . What we 
observe in the simulations might be an effect of discretization in the computational algorithm.

The degenerate elliptic operator in (6) is a challenge discussed extensively in the PDE and 
SDE literature; see, for example [4, 10, 13, 14, 19] and references therein. The classical way 
of handling degeneracy is to regularize the problem with a parameter � and then take � → 0 
[29, 34]. This allows one to establish the existence, and sometimes uniqueness, of the solution 
in a finite time interval (0, T] but does not generalize to the limiting case of T → ∞ . There are 
recent results based on weighted estimates for the problem in the absence of the regularization 
parameter � , mainly for the case of weak degeneracy, that is, when the exponent � is suffi-
ciently small (see, for instance, reference [14] for a more precise definition of weak and strong 
degeneracy) [13, 14, 19]. In most cases, the existence of solutions to the Fokker-Planck equa-
tion (7) can only be established in the one-dimensional (1D) case (again in specific weighted 
function spaces) for a finite time interval (0, T).

Existing results in simplified settings. There are indeed some precise characterizations of 
the singular behavior of such degenerate problems in simplified (yet still difficult) scenar-
ios where the particular forms of diffusion coefficients (such as D = x(1 − x) on (0, 1)) are 
assumed, for instance, in the case where the point of degeneracy (that is, the global mini-
mizer in our case) is on the boundary of the domain and appropriate boundary conditions are 
prescribed at the point of degeneracy; see for instance [4, 10] for the detailed analysis of the 
Wright-Fisher equation. To demonstrate how the specific structure of the problem plays a role 
in the theory, let us consider the 1D case of f (x) = x2 and � = 1 . We further simplify the prob-
lem by taking � = ℝ . With all these simplifications, we have that D = x2 , and the Fokker-
Planck equation (7) simplifies to

If we introduce the new variable v = x2u , we can check that v solves

Due to the degeneracy at x = 0 , we have that v(0, t) = 0 . Therefore, we can focus only on 
the positive axis. The equation for v can be written as

Let us perform the change of variable x = ey , that is, y = log x . Then it is easy to check that 
the interval (0,+∞) is mapped to (−∞,+∞) . The Fokker-Planck equation is now mapped 
into the following constant-coefficient form:

(38)ut = (x2u)xx, −∞ < x < +∞.

vt = x2vxx, −∞ < x < +∞.

(39)vt = x2vxx, 0 < x < +∞, v(0, t) = 0.

(40)ṽt = ṽyy − ṽy, ṽ(−∞, t) = 0.
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With the boundary conditions, this system has a non-localized stationary distribution. This 
leads to the fact that ∫ yR

yL
ṽdy ↛ 0 as t → ∞ for any finite interval (yL, yR) . Using the fact 

that v = x2u , we conclude that ∫ xR
xL

udx ⩽ c x−2
R

→ 0 as xR → +∞ for some c, where 
xL = eyL and xR = eyR . This simple argument shows that for any xL > 0 , ∫ ∞

xL
udx = 0 . 

Therefore, the mass of u concentrates in the region (0, xL) . This heuristic argument can be 
made more rigorous to show the concentration of the stationary distribution and can be 
generalized to the two-dimensional (2D) case with the radial function f (x) = |x|2 . Going 
beyond such specific forms seems extremely difficult.

3.3  Adding Gradient Information

One important goal of this paper is to prove that global convergence is possible with an 
algebraic rate without even approximating the gradient in the algorithm. Another goal is 
to develop an efficient derivative-free algorithm. Derivative-free methods typically com-
pare different objective function values to find the direction for the next step or to accept a 
step or not. This is so for deterministic techniques, for example, the simplex method [24] 
and also for stochastic algorithms, for example, SA [22], and consensus-based optimization 
methods [2, 35].

Even if the gradient information is not necessary for convergence, adding such informa-
tion from objective function values of several steps is also possible here. Without extra 
computational cost, the practical performance can be improved. We propose the following 
simple algorithm. First, we can accelerate the convergence with an approximated gradient 
based on the secant method as follows:

where 
∑I

i=1
wi = 1 , and wi ⩾ 0 . For example, we can set the weight wi ∼ � i for some 

0 < 𝛾 < 1 . Using G(Xn) in place of the gradient term in a standard stochastic gradient 
descent scheme, we derive a modified algorithm compared to (1):

where �g is the step size for the gradient term and other symbols follow earlier notations 
in (1).

We performed simulations using this algorithm with an estimated gradient. In 
Fig.  1, we present the result for the case when fmin = f (x∗) is known a priori and 
�(Xn) =

√
2(f (Xn) − fmin)

2 (that is, the case of � = 2 and � = 0 ). We use the weights 
wi ∼ � i where � = 0.5 and various I values as used in (41). We compare the convergence 
performance of descent algorithms based on (1) and (42). The statistics are estimated from 
103 i.i.d. runs. It is evident from the log-log plots in Fig. 1 that the approximated gradient 
information significantly accelerates the convergence of the stochastic descent algorithm 
when n is large. The semilog plots in Fig. 10 illustrate the exponential convergence when 
approximated gradients are used in the descent algorithm.

Next, we show an example of full-waveform inversion (FWI). FWI is a nonlinear inverse 
technique that utilizes the entire wavefield information to estimate the medium properties 
of the propagating domain. Without the loss of generality, the PDE constraint of FWI is the 

(41)G(Xn) =

I∑
i=1

wi

f (Xn−i+1) − f (Xn−i)

|Xn−i+1 − Xn−i|2
(
Xn−i+1 − Xn−i

)
,

(42)Xn+1 = Xn − �g G(Xn) + � �(f (Xn))�n,
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following acoustic wave equation with zero initial condition and non-reflecting boundary 
conditions:

We set the model parameter m(x) = 1∕c(x)2 , where c(x) is the wave velocity, u(x, t) is the 
forward wavefield, and s(x, t) is the wave source. The velocity parameter m is often the tar-
get of reconstruction. Equation (43) is a linear PDE but defines a nonlinear operator F  that 
maps m(x) to u(x, t) . In FWI, we translate the inverse problem of finding the model param-
eter m based on the observable seismic data {gobs

i
} to a constrained optimization problem:

where ns is the number of wave sources. For each given source si(x, t) where 1 ⩽ i ⩽ ns , 
gi(x, t;m) = RF(m) is the synthetic data with R being the linear projection operator that 
extracts the wavefield ui at the measurement domain Γ.

We comment that  (44) is a highly-nonconvex optimization problem. We will apply 
our AdaVar algorithm with an additional approximated gradient component  (42) to 
find the global minimizer. First, we parameterize the velocity c(x) to be piecewise-
constant and we wish to invert ten unknowns {vi}10i=1 ; see Fig.  11a for an illustration. 
That is, we search for X = [v1,⋯ , v10] ∈ [1.5, 5.5]10 ⊂ ℝ10 . Thus, the objective function 
can be denoted as f (m) = f (v1,⋯ , v10) = f (X) . In executing the algorithm (42), we set 
�(f (Xn)) = |f (Xn)|3 , i.e., 𝛽 = 6 > d∕2 = 5 , � = 0.125 , �g = 0.05 , � = 0.5 , and L = 2 , as 
the hyper-parameters. We consider fmin = 0 since this is a data-fitting problem. Since 
the last layer right above the bottom boundary cannot be accurately recovered due to the 
non-reflective boundary condition, we assume its velocity is known to be 5 km/s. We 
place 8 sources and 60 receivers equally distributed on the top boundary. The source 
consists of two Ricker wavelets of disjoint supports at 15 Hz peak frequency. The 
ground truth is X∗ = [4.81, 4.77, 4.75, 4.83, 4.94, 5.35, 4.67, 4.83, 5.05, 5.18].

In Figs. 11b, c, we plot the convergence histories of the objective function values and 
the iterates. In the first 500 iterations, the update is dominated by noise as the objective 
function value, and the errors in the iterates fluctuate randomly. Later, the approximated 

(43)

⎧
⎪⎪⎨⎪⎪⎩

m(x)
�2u(x, t)

�t2
− Δu(x, t) = s(x, t),

u(x, 0) = 0,

�u

�t
(x, 0) = 0.

(44)m∗ = argmin
m

f (m), f (m) =
1

2

ns�
i=1

∫Γ ∫
T

0

‖gi(x, t;m) − gobs
i

(x, t)‖2dt dx,

min

Fig. 10  Semilog plots of the same convergence statistics in Fig. 1 but for n ⩽ 700
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gradient becomes the leading driving force since the objective function decays almost 
monotonically. The top-layer coefficients, v1,⋯ , v5, converge to the ground truth as 
measured in the �2 error; see Fig.  11c. The bottom-layer coefficients converge much 
slower as the objective function is not very sensitive to their changes, and the estimated 
gradient biases towards sensitive coefficients. We also plot the results using the gradi-
ent descent algorithm starting from a homogeneous velocity of 2 km/s. The iterates get 
stuck at a local minimum in fewer than 20 iterations, as we can see from Figs. 11b, c.

This method improves the convergence rate over  (1) significantly, particularly in 
higher dimensions, as seen in the numerical experiments above. The original algo-
rithm (1) does not suffer from the curse of dimensionality in the same way as in standard 
quadrature and PDE methods for which the discretization is done dimension by dimen-
sion. The algorithm here still shows severe degradation in modestly higher dimensions 
because � in (2) depends on d in determining the noise power �(f ) . The convergence of 
the classical gradient descent method is essentially independent of dimensional degra-
dation. Thus, it is natural to add gradient information such as  (42) to have a practical 
algorithm.

Remark 3 Here, we comment that the choice of � differs from our earlier discussions 
when the (approximated) gradient is present. The � values that give the best convergence 
for our derivative-free method are quite large; see Theorem 1. With explicitly adding the 
(approximated) gradient, the stochastic term with a large � is then too weak (given the 
fact that f (x) − f ∗

min
∈ [0, 1] in our test cases) to escape a local minimum and overcome the 

adverse gradient in a reasonable time. This is particularly the case when the objective func-
tion value at the local minimum is close to the estimated optimum value f ∗

min
 . A smaller 

� naturally implies more noise based on the standard deviation � ∼ |f (x) − f ∗
min

|�∕2 when 
|f (x) − f ∗

min
| ⩽ 1 , thereby increasing the probability of escape. Without the (approximated) 

gradient, the condition to ensure convergence in probability is that 𝛽 > d∕2 ; see Corol-
lary 1. The same condition does not carry over to the case when the (approximated) gradi-
ent is present.

We can think of our estimated gradient G as a noisy version of the true gradient, i.e., 
G ≈ ∇f + �k . As a result, the iteration (42) with a constant � converges, in probability, to 
the global minimizer of f under the right scaling (which essentially is that �g ∼ 1∕k and 
� ∼ 1∕(k log log k) . This can be shown with a slight modification of the techniques from 
[16], with minor additional assumptions on f.

1.0
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Fig. 11  Global optimization for FWI: the velocity parameterization with 10 unknowns (left), the objective 
function value decay (middle), and the convergence history of [v1,⋯ , v5] (right) using the proposed sto-
chastic algorithm and the standard gradient descent algorithm
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4  Revisiting the AdaVar Stochastic Gradient Descent Algorithm in [9]

The basic concept of adding a stochastic term in the optimization algorithm with the vari-
ance of that term being state-dependent was already introduced in [9] for global optimiza-
tion. The main algorithm proposed therein is discrete and of the form

where {Xn} are the iterates, G(Xn) is the gradient of the objective function f(x) evaluated 
at Xn , {�n} are i.i.d. samples from the standard d-dimensional Gaussian, and �n is the step 
size. The noise power is controlled by the time- and state-dependent standard deviation �n 
defined as

where the sequence of scalar values {fn} is chosen by the user to implement the algorithm. 
Under proper control for the decay of fn , and �−

n
 , together with further assumptions on 

all the other parameters, the results in [9] proved convergence of (45) to the global mini-
mum of the objective function f(x) at an algebraic rate in both probability and error in the 
state space. This was a significant improvement from the classic O(1∕

√
log n) convergence 

using only time-dependent diffusion, such that given in [17].
The entire proof of the result in [9] is based on the discrete algorithm and its Markov 

property without using PDE or SDE. There are two main components to prove conver-
gence, referred to as “Property One” and “Property Two” therein. The former is to show

for any set � of the domain with a nonzero Lebesgue measure. This property ensures that 
the sequence of iterates generated by (45) will visit anywhere of the domain almost surely, 
thus including the global basin of attraction of the global minimizer. “Property Two”, on 
the other hand, focuses on the local convergence. Once an iterate Xn lands in the global 
basin of attraction (i.e., a convex subset where the global minimizer belongs and the objec-
tive function is strictly convex), the probability that Xn stays in is much bigger than the 
probability of leaving the basin. As the sublevel set �n = {x∶ f (x) ⩽ fn} shrinks with fn 
decreasing in (46), the “leaving” probability ℙ(Xn+1 ∉ �n|Xn ∈ �n) might be large as the 
volume of �n decreases while the “entering” probability ℙ(Xn+1 ∈ �n|Xn ∉ �n) becomes 
smaller again due to the decreasing volume of �n . The fact that the ratio between these two 
conditional probabilities goes to zero was key in the proof of [9] for “Property Two” and 
was driven by the gradient term. As one can see intuitively, the gradient information in (45) 
does not help with the iterates visiting everywhere of the domain, but it becomes extremely 
crucial to keep the iterate staying within the global basin. These two properties are the 
main building blocks, and we refer to [9, Sects. 3.1–3.2] for further details.

4.1  Differences

There are two main differences between our earlier paper [9] and this work. One is that 
the earlier algorithm explicitly included the gradient (see (45)), and the main proposal 

(45)Xn+1 = Xn − �nG(Xn) + �n
(
f (Xn)

)
�n,

(46)𝜎n(f (Xn)) =

{
𝜎−
n
, f (Xn) ⩽ fn,

𝜎+
n
, f (Xn) > fn,

(47)lim
N→∞

ℙ

(
N⋃
n=0

{Xn ∈ �}

)
= 1
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in this paper is derivative-free (see (1)). In this paper, the step from Xn to Xn+1 is taken 
at a uniformly random angle (due to the isotropic Gaussian noise in (1)). The optimiza-
tion landscape must be explored in a sequence of many steps to find a descent direc-
tion, and our analysis in this work can, therefore, not be done in a Markovian way on 
the discrete level based on worst-case scenarios, which was done in [9]. We need the 
probability distribution of Xn here. Therefore, it is natural to study the continuum limit 
using the Fokker-Planck equation (7). This is common in convergence analysis; see, for 
example, [17].

We also comment that the convergence proof of [9] will not work without the gradient. 
The proof of “Property One”, i.e., (47), will not be affected [9, Sect. 3.1]. This is because 
the arguments involved did not use the gradient explicitly, which, however, is essential in 
the proof of “Property Two” [9, Sect. 3.2], the local convergence. Without the gradient, the 
worst-case scenario in [9] will generate a very high probability for the iterate Xn to escape 
the set �n = {x ∈ �∶ f (x) ⩽ fn} , which is endowed with small noise variance; see  (46). 
The discrete Markovian-style analysis will then not work. We have to use the history of Xn

-values and the related probability density function to show that such worst-case scenarios 
have a small probability.

The other difference is the choice of the adaptive state-dependent noise term �(f ) . In 
[9], it was a piecewise-constant step function based on the value f (x) as shown in  (46), 
where fn is a cut-off function decaying in n towards f (x∗) . This was useful in its simplicity 
both for the analysis and in producing practical convergence. Without gradient information, 
noisy iterates driven by a constant variance will have a long hitting time to reach a close 
neighborhood of a global minimum. See the comments above and also in [9] for the impor-
tance of the gradient in this phase of the algorithm, i.e., “Property Two”. Using a �(f ) , 
which is a strictly monotone function of the objective function value f (x) , will implicitly 
exploit gradient information over a sequence of steps throughout the full domain � . In this 
work, we indeed use such a regular monotone function of |f (x) − f ∗

min
| ; see  (2). The par-

ticular choice of a regular variance function in this paper fits nicely into the analysis of the 
Fokker-Planck equation.

From a practical point of view, the advantage of the currently proposed variance is the 
implicit encoding of the gradient, as remarked on in (9). The high-dimensional example in 
the earlier paper [9, Sect. 5.1.2] showed a much faster convergence into the basin of attrac-
tion of the global minimum than the result that a uniform sampling would have given. The 
gradient was a key in guiding the sequence of Xn-values closer to the optimum �∗ . If a step 
function-type variance is used in the derivative-free setup, we will only rely on uniform 
sampling to find the domain close to the optimum, resulting in very slow convergence.

4.2  Numerical Comparison

It is natural to ask how a monotone �(f ) will do in the gradient descent algorithm of [9] and 
how the piecewise-constant variance (46) works without gradients in the framework of (1). 
The numerical examples below will shed light on these questions.

For numerical comparisons between the step function-based variance (46) proposed in 
[9] and the continuous variance  (2) proposed in this work, we will first show when the 
gradient is present (that is, the approximated gradient in (41) is replaced by the real one), 
how the two strategies perform in global optimization. We use the 2D test case in [9, Eq. 
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(5.1)]. Consider a variation of the so-called Rastrigin function [32] as our objective func-
tion J1(x) , where x = (x1, x2,⋯ , xd)

⊤ ∈ ℝd,

When c = 0 , all local minima of f1 are global minima. When c > 0 , f1 has a unique global 
minimizer x∗ = (0, 0) and infinitely many local minima and saddle points in ℝd . We set the 
search domain � to be [−20, 20]d , and consider d = 2 , a = b = 1 . In Fig. 12, we observe 
that for both c = 0.01 and c = 0.05 , iterates driven by the continuous variance (labeled as 
“cont-var”) converge much faster than the step function-based variance (labeled as “bi-
var”) in the plot. We applied the same strategy in choosing the hyper-parameters in the 
SGD algorithm with the step function-based variance (46) as in [9].

On the other hand, we can remove the gradient component in the SGD algorithm (45) 
from [9], leaving only the zero-mean noise with the two-stage variance (46) controlling the 
trajectory of the iterate Xn . As mentioned earlier, the same proof [9] will not go through. 
We can also observe the difficulty in convergence from the following numerical tests. Next, 
we consider the objective function (32) in two dimensions. The trajectory of one run using 
the continuous variance was shown earlier in Fig. 5a. Similarly, we plot the trajectory of 

(48)f1(x) = a

(
d −

d∑
i=1

cos(bx1)

)
+ c

d∑
i=1

x2
i
.

N

Fig. 12  Semilog-y plots of convergence performance for stochastic gradient descent with step function-
based variance (46) and the continuous variance (2). The statistics are estimated by 103 i.i.d. runs

O

Fig. 13  Stochastic descent without gradient driven by the two-stage variance (46) for the 2D objective func-
tion (32). Top left: effective variance �(Xn) at the n-th iteration; bottom left: the cut-off value fn in (46); top 
right: locations of Xn ; bottom right: the objective function value f (Xn)
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one run with the two-stage variance (46) in Fig. 13. The iterate Xn has been close to the 
global minimum x∗ = [2, 2]⊤ many times in the trajectory history but has also escaped 
shortly after.

5  Concluding Remarks

We have presented analysis and computational evidence to demonstrate the efficiency of an 
adaptive variance selection scheme for derivative-free optimization. While our theoretical 
justification is in the asymptotic regime, numerical simulations with the discrete algorithm 
show that the method works remarkably well in more challenging settings, for example, 
when the true value of the global minimum of the objective function is unknown.

The main difference between this contribution and other derivative-free methods is 
the rigorous analysis of global convergence with the algebraic rate, even in the case of 
no explicit gradient approximation. There are also several differences between the cur-
rent work and our previous paper [9] in which a discrete version was studied. First, in 
paper [9], the proof of Property Two does not work without gradient information. Sec-
ond, the probability distribution is needed in this work, and it depends on the objective 
function value of the iterate. The proof in [9] is instead based on the discrete algorithm. 
Several interesting theoretical issues remain to be addressed, including the convergence 
of the algorithm in the case of � = 0 , having � = ℝd , and including the estimation of 
fmin in the analysis. There are also more practical issues as, for example, the best choice 
of gradient approximation and involving parallel sequences of Xn in the optimization. 
We leave those to future works.

Appendix A: Weighted Poincaré Inequality

One key component in our analysis is the weighted Poincaré inequality with a given weight 
function w(x)∶� ↦ [0,∞) . To increase the readability of our proof, we recall here the 
inequality. The material here is standard and can be found in the references cited. For a 
general weight function w(x) , we first introduce the Muckenhoupt Ap weights.

Definition A1 (Ap weights) For a fixed 1 < p < ∞ , we say that a weight function 
w∶ℝd

↦ [0,∞) belongs to the class Ap if w is locally integrable, and for all cubes Q ⊂ ℝd , 
we have

where q is a real number such that 1
p
+

1

q
= 1 , and VQ is the volume of the cube Q.

The following weighted Poincaré inequality for weights in the Ap class can be found in 
[30, Proposition 11.7].

(A1)[w]p ∶= sup
Q⊂ℝd

(
1

VQ
∫Q

w(x) dx

)(
1

VQ
∫Q

w(x)
−

q

p dx

) p

q

< ∞,
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Theorem A1 (Weighted Poincaré inequality [30]) Let w be an Ap weight function and f (x) 
a Lipschitz function. Then the following weighted Poincaré inequality holds for the hyper-
cube 𝛺 ⊂ ℝd:

where w(�) = ∫�

w(x)dx , f�,w =
1

w(�) ∫�

f (x)w(x)dx , f� =
1

V� ∫�

f (x)dx , �� is the side 

length of the cube � , and Cd is a dimensional constant.

There have been many results on the weighted Poincaré inequality [11, 19]. The paper 
by Pérez and Rela [30] improved some of the classical results and produced a quantita-
tive control of the Poincaré constant (see (A1)) in the inequality, which is crucial for the 
analysis of our algorithm. We refer interested readers to [19, 30] for more general weighted 
Poincaré and Poincaré-Sobolev inequalities in various settings.

Remark A1 The definition of the Ap class allows one to consider degenerate and sin-
gular weights. For example, let w(x) = |x|� , x ∈ ℝd . Then w ∈ Ap if and only if 
−d < 𝜂 < d(p − 1).
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