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Abstract
In this paper, we propose to use the general L2-based Sobolev norms, i.e., Hs norms
where s ∈ R, to measure the data discrepancy due to noise in image processing
tasks that are formulated as optimization problems. As opposed to a popular trend
of developing regularization methods, we emphasize that an implicit regularization
effect can be achieved through the class of Sobolev norms as the data-fitting term.
Specifically, we analyze that the implicit regularization comes from the weights that
the Hs norm imposes on different frequency contents of an underlying image. We
further analyze the underlying noise assumption of using the Sobolev norm as the
data-fitting term from a Bayesian perspective, build the connections with the Sobolev
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gradient-based methods, and discuss the preconditioning effects on the convergence
rate of the gradient descent algorithm, leading to a better understanding of functional
spaces/metrics and the optimization process involved in image processing. Numerical
results in two geophysical applications of image denoising and fullwaveform inversion
demonstrate the implicit regularization effects.

Keywords Hs norm · Frequency bias · Image processing · Inverse problem · Implicit
regularization

Mathematics Subject Classification 65K10 · 46E36 · 68U10 · 49N45 · 92C55 · 49Q22

1 Introduction

Digital images provide a powerful and intuitive way to represent the physical world.
Unfortunately, noise is inevitable in the data that is taken or transmitted. When recov-
ering an underlying image from its corrupted measurements, one requires a fidelity
term to properly model the discrepancy of an imaging formation model as well as a
regularization term to refine the solution space of this inverse problem. The choice
of such data fidelity term often depends on specific applications, specifically on the
assumption of the noise distribution [12]. For example, a standard approach for addi-
tive Gaussian noise is the least-squares fitting. Using themaximum a posteriori (MAP)
estimation, Aubert and Aujol [4] formulated a non-convex data fidelity term for mul-
tiplicative noise, which can be solved via a difference-of-convex algorithm [1, 38].
In photon-counting devices such as x-ray computed tomography (CT) [24, 34] and
positron emission tomography (PET) [60], the number of photons collected by a device
follows a Poisson distribution, thus referred to as Poisson noise. Following the MAP
of Poisson statistics, the data discrepancy for Poisson noise can be modeled by a
log-likelihood form [17, 18, 37]. Since the nonlinearity of such data fidelity causes
computational difficulties, a popular approach in CT reconstruction adopts a weighted
least-squares model [58] as the data-fitting term.

To date, major research interests in image processing community have focused
on developing regularization methods by exploiting the prior knowledge and/or the
special structures of an imaging problem. For instance, the classic Tikhonov regular-
ization [59] returns a smooth output in an attempt to remove the noise, however, at the
cost of smearing out important structures and edges. Total variation (TV) [52] is an
edge-preserving regularization in that it tends to diffuse along the edges, rather than
across, but TV causes a staircasing (blocky) artifact. As remedies, total generalized
variation (TGV) [10] and fractional-order TV (FOTV) [68] were proposed to pre-
serve higher-order smoothness. In addition, non-local regularizations [44, 69] based
on patch similarities [11] work well for textures and repetitive patterns in an image.

Instead of proposing explicit regularization models, we reveal in this paper that
implicit regularization effects can be achieved by using only the L2-based Sobolev
norms as a data fidelity term. Specifically, we propose to minimize the following
data-fitting term,
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ΦHs (u) := 1

2
‖Au − fσ ‖2Hs , (1)

where fσ denotes the noisy measurements with an additive Gaussian noise of standard
deviation σ and A denotes a degradation operator. Recall that a Sobolev space is a
vector space of functions equipped with a norm that combines the L p norms of the
function and its derivatives up to a given order. We are particularly interested in
the L2-based Sobolev spaces, often referred to as the Hs spaces for s ∈ R. They
are Hilbert spaces, and the inner products involve the Laplacian operator, thus easy
to implement. After discretization, the squared Hs norm as the objective function
becomes a weighted least-squares error, and the quadratic nature makes it efficient
for gradient computation. Its associated norm is naturally equipped with a particular
form of weighting in the Fourier domain. Both the order of biasing (e.g., toward either
low or high frequencies) and the strength of biasing can be controlled by the choice
of s ∈ R. When s = 0, it reduces to the standard L2 norm with equal weights on
all the frequencies due to Parseval’s identity. Since Hs is a generalization of the L2

norm, using the Hs norm undoubtedly leads to improved results when the parameter s
is appropriately chosen according to the prior information, e.g., noise spectra. On the
other hand, the Hs norms offer additional flexibility by choosing s to achieve either
smoothing (s < 0) or sharpening (s > 0) effects depending on the noise type in an
input image. It was analyzed in [26] that using different Hs norms as the objective
function is equivalent to modifying the spectral property of the forward problem, thus
exhibiting different stability with respect to data noises. In [67], a particular frequency
bias of the Hs norm was utilized to accelerate fixed-point iterations when seeking
numerical solutions to elliptic partial differential equation (PDEs).

The introduction of Sobolev spaces was significant for the development of func-
tional analysis [55] and various applications related to PDEs [28] such as the finite
element method [57]. There have been relevant works to the Sobolev norms in image
processing and inverse problems. For example, the H−1 semi-norm is closely related to
the quadraticWasserstein (W2) metric from optimal transportation [62] under both the
asymptotic regime [49] and the non-asymptotic regime [51]. The asymptotic regime
refers to the fact that the two datasets under comparison are close enough such that
one of them can be considered as a small perturbation of the other, while the non-
asymptotic regime does not have a such assumption. The connections between theW2
metric and the H−1 semi-norm have been utilized in many applications [26, 50] such
as Bayesian inverse problems [23]. Another close connection comes from works on
the Sobolev gradient [45], in which the gradient of a given functional is taken with
respect to the inner product induced by the underlying Sobolev norm [14, 56] with
demonstrated effects in sharpening and edge-preserving.

In this paper, we illustrate the implicit regularization effects of the Hs norm as
a data-fitting term on a toy example of deblurring a square image, together with
two geophysical applications of image denoising and full waveform inversion. In
those examples, we use only the Hs norm as a data fidelity term in the objective
functionwithout any regularization term. The final reconstructionsmitigate the impact
of the noise, reflecting the implicit regularization effects. This approach is particularly
effective when the spectral contents of the noise are well separated from the spectral
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contents of the actual image. Since some natural images have a broad bandwidth with
spectral contents spreading out in the frequency domain, the implicit regularization
by Hs alone may not effectively preserve the important features. In those scenarios,
it is beneficial to incorporate, for example, the total variation as a regularization term
together with the Hs norm as the data fidelity.We acknowledge that using the Hs norm
as the data fidelity term together with the total variation regularization has been studied
in [39, 48] for image decomposition. In this work, we generalize their approaches by
considering s as a tunable hyperparameter in practical implementations and proposing
a more efficient algorithm by the alternating direction method of multipliers (ADMM)
[9, 31].

The main contributions of this work are threefold. First, we propose to use the Hs

norms as a novel data-fitting term to effectively utilize their implicit regularization
effects for noise removal. Second, we analyze the underlying noise assumption of
using the Hs norms as the objective function from a Bayesian perspective, its con-
nections to the Sobolev gradient flow, and the resulting preconditioning effects on the
convergence rate. Such analysis contributes to a better understanding of the advantages
by using the L2-based Sobolev norms in image processing. Lastly, we present a series
of computational approaches to calculating the Hs norms under different setups.

The rest of the paper is organized as follows. Section2 devotes to the analysis of
the Sobolev norms, including the implicit regularization effects, the noise assumption
from a Bayesian perspective, the connections to theW2 distance, the Sobolev gradient,
and the preconditioning effects. We describe three approaches for computing the Hs

norm in Sect. 3 under different boundary conditions and choices of s. In Sect. 4, we
conduct experiments on geographical examples to demonstrate different scenarios
where the weak norm (s < 0) and the strong norm (s > 0) are preferred, respectively.
Section5 revisits the Hs+TVmodel [39, 48]with a tunable parameter s and an efficient
algorithm for image deblurring. Conclusions follow in Sect. 6.

2 Analysis on Sobolev Norms

In this section, we briefly review the definitions and properties of the L2-based Sobolev
norms, followed by discussing the implicit regularization effects in Sect. 2.2. We draw
connections of the Sobolev norms to a Bayesian interpretation of data fidelity in
Sect. 2.3, the quadraticWasserstein distance [62] in Sect. 2.4, and the Sobolev gradient
[14] in Sect. 2.5. Lastly in Sect. 2.6, we discuss how the choice of the Sobolev norm
can affect the convergence rate of the gradient descent algorithm.

2.1 Hs Sobolev Space

There are two common ways to define the L2-based Sobolev norm. One is based on
the Sobolev space Wk,p(Rd) for a nonnegative integer k; see Definition 1.

Definition 1 (Sobolev Space Wk,p(Rd)) Let 1 � p < ∞ and k be a nonnegative

integer. If a function f and its weak derivatives Dα f = ∂ |α| f
∂x

α1
1 ···∂xαd

d
, |α| � k all lie
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in L p(Rd), where α is a multi-index and |α| = ∑d
i=1 αi , we say f ∈ Wk,p(Rd) and

define the Wk,p(Rd) norm of f as

‖ f ‖Wk,p(Rd ) :=
⎛

⎝
∑

|α|�k

‖Dα f ‖p
L p(Rd )

⎞

⎠

1/p

. (2)

In this work, we focus on the L2-based Sobolev space Wk,2, which is a Hilbert space.
While Definition 1 is concerned with integer derivatives (in contrast to fractional

derivatives), there exists a natural extension to a more general L2-based Sobolev space
Ws,2(Rd) for an arbitrary scalar s ∈ R through the Fourier transform. This leads to
the second definition of the Sobolev space. Specifically, we define by F : S ′(Rd) �→
S ′(Rd) the Fourier transform where

F f (ξ) = f̂ (ξ) = (2π)−
d
2

∫

Rd
f (x)e−i x ·ξdx, ∀ f ∈ S ′(Rd). (3)

We further denote F−1 as the inverse Fourier transform, I as the identity operator,
〈ξ 〉 := √

1 + |ξ |2, and S ′(Rd) as the space of tempered distributions [2, Sec. 6.4].

Definition 2 (Sobolev Space Hs(Rd)) Let s ∈ R, the Sobolev space Hs over Rd is
given by

Hs(Rd) :=
{
f ∈ S ′(Rd) : F−1 [〈ξ 〉sF f

] ∈ L2(Rd)
}

. (4)

The space Hs(Rd) is equipped with the norm

‖ f ‖Hs (Rd ) :=
∥
∥
∥F−1 [〈ξ 〉sF f

]∥∥
∥
L2(Rd )

= ‖Ps f ‖L2(Rd ) , (5)

where the operator Ps := (I − Δ)s/2.

When s = 0, the Hs(Rd) space (norm) reduces to the standard L2 space (norm).One
can show thatWk,2(Rd) = Hk(Rd) for any integer k [2].We remark that ‖ f ‖Hk (Rd ) �=
‖ f ‖Wk,2(Rd ) for the same k in general, but the two norms are equivalent, which can
be shown through Fourier transforms. Hereafter, we focus on Hs(Rd) for s ∈ R since
it allows for fraction-valued s which can be a tunable parameter in image processing
applications.

2.2 Implicit Regularization Effects of the Hs Norms

Without loss of generality, we consider the following data formation model based on
a linear inverse problem,

fσ = Au + nσ , (6)
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where fσ denotes the noisy measurements with an additive Gaussian noise nσ of
standard deviation σ , andA denotes a degradation operator. A general inverse problem
is posted as recovering an underlying image u from the data fσ with the knowledge of
A. If A is the identity operator, i.e., A = I , this problem is referred to as denoising.
If A can be formulated as a convolution operator with a blurring kernel, it is called
image deblurring or deconvolution.

We assume that the linear operator A is injective and asymptotically diagonal in
the Fourier domain such that there exist two constants C1,C2 > 0, and

C1〈ξ 〉−α û(ξ) � Âu(ξ) � C2〈ξ 〉−α û(ξ), (7)

where α ∈ R, and the hat symbol denotes the Fourier transform with frequency
coordinate ξ .

When α > 0, we say the operator A is “smoothing.” The value of α can describe
to some extent the degree of ill-conditionedness (or difficulty) of solving an inverse
problem [5, 25] in the sense that the larger the α is, the more ill-posed the associated
inverse problem becomes.

Weexamine the regularization effects of using the Hs normdefined in (5) to quantify
the data misfit. In other words, we seek a solution of the inverse problem (6) by
minimizing

1

2
‖Au − fσ ‖2Hs = 1

2
‖Ps(Au − fσ )‖2L2 = 1

2

∫

Rd
〈ξ 〉2s |Âu(ξ) − f̂σ (ξ)|2dξ, (8)

without any additional regularization term. The minimizer of ΦHs (u) has a closed-
form solution, i.e.,

u = (PsA)†Ps fσ , (PsA)† =
(
A∗P∗

s PsA
)−1A∗P∗

s , (9)

where the superscript † denotes the Moore–Penrose inverse operator [64, Chapter 11]
and A∗ is the adjoint operator of A under the L2 inner product. Note that P∗

s = Ps

as Ps is self-adjoint. By comparing (9) with the standard least-squares solution, we
conclude that the Hs-based inversion can be seen as a weighted least-squares method
if s �= 0.

Remark 1 Avariant of (8) is to use the
.
Hs semi-norm instead of the standard Hs norm.

That is, we replace 〈ξ 〉2s = (1 + |ξ |2)s by |ξ |2s , and the objective function becomes

Φ .
Hs (u) = 1

2
‖Au − fσ ‖2.

Hs
:= 1

2

∫

Rd
|ξ |2s |Âu(ξ) − f̂σ (ξ)|2dξ. (10)

The frequency bias from Φ .
Hs is more straightforward to analyze than the one from

ΦHs (u), as the weight in front of each frequency is precisely an algebraic factor |ξ |s .
If f ∈ Hs for s > 0, we have || f || .

Hs < ∞. However, this is not the case for s < 0.
For example, a function f may have a finite H−1 norm, but if

∫
f dx �= 0, it does not

have a well-defined
.
H−1 norm.
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Remark 2 If two scalars s1 < s2, then Hs2 ⊂ Hs1 is continuously embedded. In other
words, we specify the order among all Hs spaces, e.g., H2 ⊂ H1 ⊂ L2 ⊂ H−1 ⊂
H−2.

We consider the following three scenarios to illustrate the implicit regularization
effects of ΦHs as an objective function. A similar analysis applies to Φ .

Hs .

– When s = 0, the solution (9) reduces to the standard least-squares solution, i.e.,
u = A† fσ . Without any regularization term, this solution inevitably overfits the
noise in the observation fσ .

– When s > 0, Ps can be regarded as a differential operator, which amplifies high-
frequency contents of fσ . If the noise in fσ is also high frequency, the overfitting
phenomenon caused by Ps is even worse than the standard least-squares solution.
On the other hand, if fσ is corrupted by lower-frequency noise, the weighted
least-squares would avoid overfitting.

– When s < 0,Ps is an integral operator, meaning that applyingPs to fσ suppresses
high-frequency components. The noisy content in fσ does not fully “propagate”
into the reconstructed solution u. The inverse problem is less sensitive to the
high-frequency noise in fσ , indicating the improved well-posedness. Again, this
property becomes disadvantageous if fσ is subject to lower-frequency noise.

Based on the above three different types of scenarios, it is clear that the Hs norm
causes a particular weight on the frequency contents of the input function according
to the choice of s. We will later refer to this property as the spectral bias of the Hs

norm. For the higher frequency of the noise, the smaller negative s should be used to
suppress it. On the other hand, for the lower frequency of the noise, the bigger positive
s is more effective in neutralizing its effect. Later in Sect. 4, we will use this as an
intuitive way to choose the proper s for different imaging tasks.

Remark 3 To summarize, if the data are polluted with high-frequency noise, using
a weak norm as the objective function alone improves the posedness of the inverse
data-fitting problem without the help of any regularization term. On the other hand, a
potential disadvantageof theweaker norm is that the objective functionnot only implic-
itly suppresses higher-frequency noisy contents but also higher-frequency components
of the noise-free data. Consequently, the reconstruction loses the high-frequency res-
olution, as illustrated in [26, Figure 4].

Remark 4 One can also generalize (6) to a nonlinear inverse problem. The main prop-
erties of the Hs norm will remain, but the analysis would be less straightforward.
In Sect. 4.2, we present such a nonlinear example and numerically demonstrate the
benefits of using the Hs norm.

Next, we demonstrate the aforementioned properties regarding s = 0, s > 0, and
s < 0 through numerical examples of reconstructing a (discrete) image u from (6) by
minimizing the discretized objective function

ΦHs (u) = 1

2
‖Ps(Au − fσ )‖2L2 ,
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(a) Blurry In-
put

(b) s = 1 (c) s = 0.5 (d) s = 0 (e) s = −0.5 (f) s = −1

Fig. 1 Effects of minimizing ΦHs with different choices of s. The reconstructed solutions gradually tran-
sition from sharp to blurry after the same number of gradient descent iterations, showing that strong norms
(s > 0) are better at sharpening

where Ps is a proper discretization of the continuous operator Ps , and A denotes the
linear operator A in the matrix form; please refer to Sect. 3 for discretization details.
Applying the gradient descent algorithm with a fixed step size η to minimize the
objective function ΦHs (u) yields the following iterative step:

u(n+1) = u(n) − η∇Φ(u(n)) = u(n) − ηAT PT
s Ps(Au

(n) − fσ ). (11)

For the sake of convergence, the step size η should be chosen smaller than 1/L where
L = λmax, the largest eigenvalue of AT PT

s Ps A (also its matrix 2-norm). As L depends
on the choice of s, we choose η small enough such that all Hs methods converge for
a fair comparison.

We apply the gradient descent iteration (11) to a simple example of image deblur-
ring. Consider a binary image of size 100 × 100 with a black square in the middle to
be the ground truth, referred to as the Square image. We can consider the image as
a discretization of a 2D function u : R2 �→ R on a regular mesh and it is typical to
assume that u ∈ L2(R2). The continuous linear mapping A : L2(R2) �→ L2(R2) is
a convolution operator. Its discrete version can be formulated as a convolution with
15 × 15 Gaussian kernel of standard deviation 1, which can be implemented through
fspecial(‘gaussian’,15,1) inMatlab. The blurry image is further corrupted
by an additive Gaussian noise with standard deviation σ .

When σ = 0, the input image is blurry but not noisy, as seen in Fig. 1a. We show
reconstructed images by minimizing ΦHs with different choices of s via (11). We
fix the step size η = 10−4 for all methods such that the gradient descent algorithms
converge for all. The five values of s in Fig. 1 cover all scenarios: s = 0, s > 0, and
s < 0. After running 100 iterations of the gradient descent algorithm (11), we observe
in Fig. 1 a gradual transition from sharp to blurry reconstruction results as s decreases
from s = 1 to s = −1. This is aligned with our earlier discussion that the operator
Ps for positive s is a differential operator, which boosts the higher-frequency content
of AT (Au(n) − fσ ), corresponding to the gradient when the L2 norm becomes the
objective function. Another way to interpret the results is the change in convergence
rate. The Hs objective function with s > 0 increases the eigenvalue for the oscillatory
modes of the image, which dominates the initial residual. Thus, these error modes are
eliminated faster than the case of s � 0; see more details in Sect. 2.6. Consequently,
it accelerates the gradient descent algorithm to converge to the sharp ground truth,
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as the only missing information in the blurry input is precisely in the high-frequency
domain. In summary, strong norms (s > 0) are good at sharpening.

We then examine the influence of noise on the reconstructions by minimizing the
ΦHs functional. For this purpose, we add different amounts of noises, i.e., σ = 0.1
and σ = 0.5, to the same blurry image (shown in Fig. 1a), leading to noisy and blurry
data shown in Fig. 2a and Fig. 2g, respectively. Again, we reconstruct the images by
running 100 iterations of gradient descent with the same step size η = 1, which is
much larger than the earlier example. Here, we use weak Hs norms to reduce the
noise impact. The Lipschitz constant of the gradient induced by the weak Hs norm is
much smaller than the ones based on the strong norms, which thus affects the choice
of the step size (to be larger). The top row of Fig. 2 corresponds to a smaller noise
level (σ = 0.1). The L2-based method, i.e., s = 0, clearly suffers from overfitting the
noise, as the reconstruction is even noisier than the input. The best result is achieved
at s = −0.5, while the reconstructed images are over smooth as s decreases. This set
of tests shows both advantages and potential limitations of weak norms (s < 0) as
addressed in Remark 3. The bottom row of Fig. 2 corresponds to a larger noise level
(σ = 0.5), when the overfitting phenomenon is more severe not only for the L2 norm,
but also for the cases of s = −0.5 and s = −0.25. The best reconstruction occurs
at s = −1, where the spectral bias of the objective function toward lower-frequency
contents of the residual (the difference between the current iterate and the input image)
is the strongest. That is, the weighting coefficients on the low-frequency components
are much bigger in contrast to the ones on the high-frequency ones due to the rapid
decay of function 〈ξ 〉−1 compared to 〈ξ 〉−0.5. The comparison between two noise
levels also implies that the best choice of s is data-dependent. One heuristic principle
is that the noisier the input is, the weaker objective function (smaller s) one should
choose to avoid overfitting the noise.

In Fig. 3, we show the cross-sections of 2D images; the location of the cross-section
is indicated by the red lines in Fig. 2a and Fig. 2g. In Fig. 3a, the 1D plots clearly
show the over-smoothing artifact for s = −1, and the construction of s = −0.5 is
closest to the ground truth. In contrast, the case s = −0.5 is no longer good enough
to “smooth” out the stronger noise in Fig. 3b, and the result from s = −1 turns out to
be the best fit.

We remark that two critical factors for observing different results in Fig. 1 and
Fig. 2 are the use of iterative scheme (11) and the maximum number of iterations.
For the noise-free setup in Fig. 1, the analytic least-squares solutions (9) for different
s coincide, while they have different rates of convergence in the iterative scheme.
See Fig. 4a where we plot the convergence history of the relative error defined by
‖u(n) − u∗‖L2/‖u∗‖L2 , where u∗ is the closed-form solution and the function L2

norm becomes the matrix Frobenius norm after discretization.
In the noisy setup, the iterative gradient descent formula (11) can be regarded as

the Landweber iteration [25, Sec. 6.1],

u(n+1) = u(n) + T� (
yδ − Tu(n)

)
,
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(a) Input (b) s = −1 (c) s = −0.75 (d) s = −0.5 (e) s = −0.25 (f) s = 0 (L2)

(g) Input (h) s = −1 (i) s = −0.75 (j) s = −0.5 (k) s = −0.25 (l) s = 0 (L2)

Fig. 2 Deblurring the Square image by minimizing ΦHs (u). The top row presents the blurry noisy input
with σ = 0.1 and reconstruction results of different s values. A noisier case (σ = 0.5) is illustrated in the
bottom row

where T = √
ηPs A and yδ = √

ηPs fσ . As stated in [25], “many iterative methods
exhibit a ‘self-regularizing property’ in the sense that early termination of the iterative
process has a regularizing effect” (P. 154). In Fig. 4b and Fig. 4c, we show the change in
the relative error for a very large number of iterations so that we can observe the crucial
impact of early stopping. Based on [25, Sec. 6.1], a good stopping criterion is to choose
the smallest n such that ‖yδ − Tu(n)‖L2 < 2

√
ηδs where δs := ‖Ps( fσ − f )‖L2 ≈

‖ fσ − f ‖Hs and f denotes the noise-free blurred data.
We remark that ‖yδ −Tu(n)‖L2 monotonically decreases with respect to n since its

square is the scaled objective function ΦHs . The value δs is the noise power measured
in the Hs norm. The optimal stopping iteration isO(δ−2

s ) [25, Proposition 6.4]. Note
that for the noises in Fig. 2, δs = O(|ξ |s)with the noise frequency ξ . Thus, the optimal
stopping iteration is O(|ξ |−2s), monotonically decreasing as s increases, precisely as
illustrated in Fig. 4. Moreover, even if we can use an a priori estimate to choose the
optimal stopping iteration, Fig. 4c shows that a weaker Hs norm can achieve a smaller
optimal relative error. This is because, when n is the optimal iteration number,

‖u∗ − u(n)‖2 � ‖u∗ − u(0)‖2(1 − 2/δs).

Since u(0) is fixed for any choice of s, the smaller the δs , the smaller the optimal error
in the reconstructed solution.

2.3 A Bayesian Interpretation

The choice of the data fidelity term in image processing can be derived from aBayesian
approach under a proper assumption on the noise distribution of the data [12]. In this
subsection, we present the noise assumption associated with the proposed Hs data
fidelity term (8) under the Bayesian framework.

One major advantage of the Bayesian approach is to account for the uncertainty in
the data which will be propagated to the solution to the inverse problem. It combines
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Fig. 3 The zoom-in view for different choice of s at the cross-section (the red line) illustrated in Fig. 2a
and Fig. 2g, respectively

Fig. 4 The relative error in Frobenius norm ‖u(n) − u∗‖F/‖u∗‖F with respect to the number of iterations
for setups in Fig. 1 and Fig. 2

a probabilistic model for the observed data fσ with a density function P( fσ |u) and a
probability distribution P(u) representing the prior knowledge regarding the unknown
u. Bayes’ theorem provides a way to construct the posterior distribution, denoted as
P(u| fσ ), where

P(u| fσ ) = P( fσ |u)P(u)

P( fσ )
. (12)

The posterior distribution P(u| fσ ) can be regarded as the solution to the Bayesian
inverse problem, which differs from the deterministic framework of solving inverse
problems that returns a single value of u, e.g., the minimizer of (8).

Although theBayesian and the deterministic approaches are quite different, there are
connections when we try to find the maximum a posteriori (MAP) estimation.Without
loss of generality, we consider that the prior distribution P(u) follows the normal
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distribution N (0,C) and C is invertible. Then maximizing the posterior distribution
P(u| fσ ) is equivalent to the following minimization problem [22, Sec. 4.3],

u∗ = argmin
u

E(u; fσ ) + 1

2
〈u,C−1u〉L2 , (13)

where E(u; fσ ) = − logP( fσ |u) is commonly known as the negative log-likelihood
function. Consider the inverse problem model (6) where we assume the additive noise
nσ ∼ N (0, Γ ). We then have

P( fσ |u) = N (Au, Γ ) ∝ exp

(

−1

2
‖Au − fσ ‖2Γ

)

, 〈·, ·〉Γ := 〈·, Γ −1·〉L2 ,

after ignoring the normalizing constant. If the inverse covariance operator Γ −1 =
P∗
s Ps for Ps defined in Sect. 2.2, we then have

E(u; fσ ) = − logP( fσ |u) ∝ 1

2
‖Au − fσ ‖2Γ = 1

2
‖Ps (Au − fσ ) ‖2L2 ,

which reduces to our Hs objective function (8).
Based on the above Bayesian interpretation, using (8) as the data fidelity term is

equivalent to a data noise assumption nσ ∼ N (0,
(P∗

s Ps
)−1

) in the Bayesian frame-
work. Note that the L2 norm corresponds to nσ ∼ N (0, I ), the standard Gaussian.
This perspective again demonstrates that we can enforce prior information to achieve
implicit regularization effects through the data fidelity (likelihood function) term.
For example, nσ ∼ N (0, (I − Δ)−1) (s = 1) supposes a smooth additive noise,
while nσ ∼ N (0, I − Δ) (s = −1) assumes that the noise lacks of smoothness.
This interpretation also extends to the semi-norm Φ .

Hs (10), which corresponds to
nσ ∼ N (0, (−Δ)−s). These noise models are often studied in the context of Ellip-
tic Gaussian Process [6, 7] or Fractional Gaussian Field [41] for non-integer choices
of s. There have been many works on sampling such noise models through solving
the (fractional) elliptic PDEs; for example, see [8]. We also remark that in [23], the
authors have shown that the quadratic Wasserstein metric (W2) as a likelihood func-
tion in Bayesian inference is asymptotically equivalent to assuming a multiplicative
Gaussian noise model where the covariance operator is a weighted Laplacian operator.

2.4 Relationship with theW2 Distance

Here, we review a connection between the Sobolev norms and the quadratic Wasser-
stein (W2) distance [62] to provide a better understanding of both metrics. The
Wasserstein distance defined below is associated to the cost function c(x, y) = |x−y|p
in the optimal transportation problem.

Definition 3 (Wasserstein Distance) We denote byPp(Ω) the set of probability mea-
sures with finite moments of order p. For 1 � p < ∞,
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Wp(μ, ν) =
(

inf
Tμ,ν∈M

∫

Ω

∣
∣x − Tμ,ν(x)

∣
∣p dμ(x)

) 1
p

, μ, ν ∈ Pp(Ω), (14)

where Tμ,ν is a push-forward map such that Tμ,ν#μ = ν [62], andM is the set of all
maps that push forward μ into ν. Note that W2 corresponds to the case p = 2.

An asymptotic connection between theW2 metric and the Hs norm was first provided
in [49] given the two probability distributions under comparison are close enough such
that the linearization error is small. Consider μ as the probability measure and dπ as
an infinitesimal perturbation that has zero total mass. Then

W2(μ,μ + dπ) = ‖dπ‖ .
H−1

(dμ)

+ O(dπ). (15)

We remark that
.
H−1

(dμ) is the weighted
.
H−1 semi-norm. We refer readers to [62,

Sec. 7.6] for its detailed definition.
A connection between W2 and

.
H−1 under a non-asymptotic regime was later pre-

sented in [51]. Let f and g be the probability densities for the measure μ and ν,
respectively. Provided that c1 � f , g � c2, we have the following non-asymptotic
equivalence between W2 and

.
H−1 [51],

1

c2
‖ f − g‖ .

H−1 ≤ W2(μ, ν) ≤ 1

c1
‖ f − g‖ .

H−1 . (16)

Note that in both the asymptotic and the non-asymptotic regimes, the W2 metric
shares a similar spectral bias as the

.
H−1 semi-norm, up to a weighting function. Thus,

the implicit regularization properties for the case s = −1 discussed in Sect. 2.2 can
extend to the quadraticWassersteinmetric. This finding explains the improved stability
of the Wasserstein metric in inverse problems from various applied fields, including
machine learning [3], parameter identification [66], and full waveform inversion [65].

2.5 Relationship with the Sobolev Gradient Flow

The well-known heat equation ut = Δu where u : Ω �→ R (Ω is an open subset ofR2

with smooth boundary ∂Ω) can be seen as the gradient flow of the energy functional

E(u) = 1

2

∫

Ω

|∇u|2dx = 1

2
‖∇u‖2L2 ,

with respect to the L2 inner product 〈v,w〉L2 = ∫
Ω

v w dx . A different gradient flow
can be derived from a more general inner product, for example, based on the Hilbert
space Hs in Definition 2 for any s ∈ R. An inner product on the Sobolev space H1(Ω)

[28, 56] can be defined as

gλ(v,w) = (1 − λ)〈v,w〉L2 + λ〈v,w〉H1 = 〈v,w〉L2 + λ〈v,w〉 .
H1 ,
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for any λ > 0 and 〈v,w〉 .
H1 = 〈∇v,∇w〉L2 . If we are only interested in periodic

functions on the domain Ω , the gradient operators considered here are equipped with
the periodic boundary condition. When λ = 0, gλ(v,w) reduces the conventional L2

inner product, and when λ = 1, it becomes the standard H1 inner product: 〈v,w〉H1 =
〈v,w〉L2 + 〈∇v,∇w〉L2 . Calder et al. [14] exploited a general Sobolev gradient flow
for image processing and established the well-posedness of the Sobolev gradient flow
ut = (I − λΔ)−1Δu in both the forward and the backward directions of minimizing
E(u). Specifically worth noticing is that the backward direction can be regarded as a
sharpening operator [40, 42].

Without loss of generality, we set λ = 1 when studying a connection between the
Sobolev gradient and the gradient of the Hs norm as the energy functional. Given
any energy (objective) functional E(u), an inner product based on the Sobolev metric
H1(Ω) gives a specific gradient formula

∇H1E(u) = (I − Δ)−1∇L2E(u), (17)

such that ∀v ∈ H1(Ω) ⊂ L2(Ω), we have

〈∇H1E(u), v〉H1 = 〈∇L2E(u), v〉L2 = lim
ε→0

E(u + εv) − E(u)

ε
, (18)

If we consider the energy functionals ΦL2(u) (i.e., ΦH0(u)) and ΦH−1(u) defined
in (8), we have

∇L2

(
ΦL2(u)

)
= A∗(Au − fσ ),

∇H1

(
ΦL2(u)

)
= (I − Δ)−1A∗(Au − fσ ),

∇L2

(
ΦH−1(u)

)
= A∗(I − Δ)−1(Au − fσ ).

Correspondingly, we have the following three gradient flow equations:

ut = −A∗(Au − fσ ) (L2 gradient flow of ΦL2(u)), (19)

ut = −(I − Δ)−1A∗(Au − fσ ) (H1 gradient flow of ΦL2(u)), (20)

ut = −A∗(I − Δ)−1(Au − fσ ) (L2 gradient flow of ΦH−1(u)). (21)

If A∗ shares the same set of eigenfunctions as the Laplace operator Δ, then A∗(I −
Δ)−1 = (I − Δ)−1A∗, and hence (20) is exactly equivalent to (21). Even if A∗ does
not commute with (I − Δ)−1, one can still view (I − Δ)−1 as a smoothing (integral)
preconditioning operator upon the residualAu− fσ , which we wish to reduce to zero
no matter the objective function is ΦL2(u) or ΦH−1(u). To sum up, (20) and (21) are
similar in nature in terms of the spectral bias of the resulting gradient descent dynamics,
which demonstrates the equivalence between the change of the gradient flow and the
change of the objective function under certain circumstances. In contrast to (19), both
(20) and (21) are equippedwith the smoothing property due to the additional (I−Δ)−1

operator.
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2.6 Changing the Rate of Convergence

So far, our analysis has been focusing on how the Hs norm is related to the data noise
nσ and its regularization effects during the optimization process. In this section, we
address another interesting property of the Hs norm as the objective function: it may
improve the rate of convergence in gradient descent.

Extending the L2 gradient flow (21) to a general ΦHs (u) energy functional, we
obtain a gradient flow equation with respect to u:

ut = −A∗P∗
s Ps(Au − fσ ), (22)

where Ps = (I − Δ)s/2. Minimizing the ΦHs (u) energy functional (8) is equivalent
to reducing the Hs norm of the residualR := Au − fσ . Based on (22), we have that

Rt = Aut = −AA∗P∗
s PsR. (23)

The decay rate of the residualR is directly determined by the spectral property of the
linear operator AA∗P∗

s Ps . After discretization, (23) becomes

R(k) = (I − ηEs)R
(k−1) = (I − ηEs)

k R(0), Es = AA�P�
s Ps,

where I is the identity matrix and η is a properly chosen step size in gradient descent.
As a result,

‖R(k)‖2 = ‖(I − ηEs)
k R(0)‖2 � (1 − ηλmin)

k‖R(0)‖2,

where λmin is the minimum eigenvalue of Es , which consequently depends on the
choice of s. Given a fixed forward operatorA, by properly choosing s, wemay improve
the convergence rate by increasing λmin. For example, ifAu = Δu, choosing the H−2

norm as the objective function yields the fastest convergence among the class of Hs

norms [67].

3 Numerical Computation of the Hs Norms

In this section, we present three numerical methods for computing the general Hs

norms of any s ∈ R. The first one (in Sect. 3.1) applies to periodic functions defined
on a domain, which is either the entire Rd or a compact subset of Rd , denoted by Ω .
We are mainly interested in periodic functions to align with a fast implementation of
convolution that assumes the periodic boundary condition. In addition, we discuss the
functions with zero Neumann boundary condition in Sect. 3.2 and integer-valued s in
Sect. 3.3.
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3.1 Through the Discrete Fourier Transform

Recall that the Hilbert space Hs(Rn), s ∈ R, is equipped with the norm (5). If we
compute the Hs norm of a periodic function f ∈ Hs defined on the entire R

d , or
equivalently, defined on Ω ⊂ R

d , we have

‖ f ‖Hs (Rn) = ‖Ps f ‖L2(Rn) ≈ ‖Ps f ‖L2(Rn) , (24)

where Ps f = F−1
[
(1 + |ξ |2)s/2F f

]
and “≈” indicates the approximation by dis-

cretization. The discretization of the linear operatorPs , denoted as Ps , can be computed
explicitly throughdiagonalization, or implicitly, through the fast Fourier transform.For
the former, the discretization ofF is the discrete Fourier transform (DFT)matrix,while
the discretization ofF−1 is its conjugate transpose. The discretization of (1+|ξ |2)s/2
is correspondingly a diagonal matrix.

3.2 Through the Discrete Cosine Transform

If we are interested in computing the Hs norm of non-periodic functions on the domain
Ω that is a compact subset of Rd , we adopt the zero Neumann boundary condition
[53] as the boundary condition for the Laplacian operator. As a result, rather than
DFT, a consistent definition is through the discrete cosine transform (DCT) due to
its relationship with the discrete Laplacian on a regular grid associated with the zero
Neumann boundary condition, i.e.,

‖ f ‖Hs (Ω) ≈ ‖P̂s f ‖L2(Ω), P̂s = C−1(I − Λ)s/2C, (25)

where C and C−1 are matrices representing the DCT and its inverse, respectively, and
Λ is a diagonal matrix whose diagonal entries are eigenvalues of the discrete Laplacian
with the zero Neumann boundary condition. One may observe that (25) shares great
similarity with (5) except for the facts that DFT is replaced with DCT and the diagonal
matrix also varies according to eigenvectors and eigenvalues of the discrete Laplacian
with different boundary conditions.

3.3 Through Solving a Partial Differential Equation

Let Ω ⊂ R
n be a bounded Lipschitz-smooth domain. The Hilbert space Hs(Ω) is the

same as the Sobolev space Ws,2(Ω) for all integers s ∈ Z; see [2, Sec. 7], i.e.,

Ws,2(Ω) = { f |Ω : f ∈ Ws,2(Rd)} = { f |Ω : f ∈ Hs(Rd)} = Hs(Ω).

Consequently, we can define an equivalent norm for functions in Hs(Ω) through
‖ · ‖Ws,2(Ω), which involves differential operators with the zero Neumann boundary
conditions [53]. When s ∈ N, the computation of theWs,2(Ω) norm should follow its
definition in Definition 1, while the differential operator involved should be handled
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with the zero Neumann boundary condition. In this case, one explicit definition of
‖ f ‖H−s (Ω) via the Laplace operator [53, 67] is given by

‖ f ‖H−s (Ω) = ‖u‖Hs (Ω), (26)

where u(x) is the solution to the following partial differential equation with the zero
Neumann boundary condition [53, Section 3],

{
Lsu(x) = f (x), x ∈ Ω,

∇u · n = 0, x ∈ ∂Ω,
(27)

for Ls = ∑

|α|�s
(−1)|α|D2α.

We may define the operator L−s by setting u = L−s f . Combining (26) and (27),
we have

‖ f ‖2H−s (Ω)
= 〈u, f 〉L2(Ω) = 〈L−s f , f 〉L2(Ω) = ‖P̃s f ‖22, (28)

where P̃∗
s P̃s = L−s . We may also denote P̃s = L−s/2. The numerical discretization

of P̃s is denoted as P̃s .
Note that (5) and (26) do not yield precisely the same norm given f ∈ Hs(Rd)

with s ∈ Z. For example, when s = −2 and d = 2, the definition (5) depends
on the integral operator (I − Δ)−1 based on the definition of the H−s(Ω) norm,
while the definition (26) depends on the integral operator (I − Δ + Δ2)−1/2 based
on the definition of the W−s,2(Ω) norm in (1). However, the leading terms in both
definitions match. Thus, they are equivalent norms for functions that belong to the
same functional space Hs(Ω) = Ws,2(Ω) given a fixed s. We remark that the Hs

normswith non-integer s cannot be calculated through PDEs; instead, one should refer
to Sect. 3.2.

4 Experiments

In this section, we first present the denoising results of low-frequency noise arisen in
geographical images in Sect. 4.1, followed by a nonlinear geophysical inverse problem
in Sect. 4.2. In both examples, there is no regularization term in the objective function,
so the implicit regularization effects purely come from the Hs norm as the data fidelity
term. In a concrete application, an intuitive way of choosing s is based on comparing
the data noise oscillation frequency as suggested in Sect. 2.2, followed byminor tuning
of s.

4.1 Geophysical Image Denoising

We present a denoising example from a seismic application, in which the noise is
mostly of low frequencies. The noisy image is the output of the so-called reverse-

123



La Matematica

0 1 2 3 4 5 6 7 8 9
x (km)

0

1

2

3

z 
(k

m
)

-0.05

0

0.05

S
lo

w
ne

ss
 (

s2
/k

m
2
)

(a) Ground Truth
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(b) Noise
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(c) Noisy Input, PSNR= 27.53
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(d) Ḣ1, PSNR= 36.34
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(e) Ḣ2, PSNR= 37.54
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(f) Ḣ3, PSNR= 37.97

Fig. 5 Marmousi RTM image denoising using different Ḣ s semi-norms as the data fidelity term

time migration (RTM) [20], which is a wave equation migration method to illustrate
complex structures of the earth, especially strong contrast geological interfaces. The
output image is the zero time-lag cross-correlation between the source and the receiver
wavefields.

However, artifacts are produced by the cross-correlation of source-receiver wave-
fields propagating in the same direction. Specifically, migration artifacts appear at
shallow depths, above strong reflectors, and severely mask the migrated structures; see
Fig. 5c. They are generated by the cross-correlation of reflections, backscatteredwaves,
head waves, and diving waves [70]. The ground truth image is shown in Fig. 5a.We are
interested in reducing the noise (see Fig. 5b), strongly dominated by the low-frequency
components, in the input image Fig. 5c by minimizing the objective function (10),
where the linear operatorA is the identity. We regard the noisy image as a piece-wise
constant discretization of an H3(Ω) function where Ω is the rectangle domain.

Based on the discussion in Sect. 2.2, it is beneficial to use strong norms (i.e., s > 0)
to suppress the low-frequency noise. Here, we consider

.
H1,

.
H2, and

.
H3 with the

corresponding results shown in Figs. 5d-5f, respectively. We quantitatively measure
the reconstruction performance in terms of the peak signal-to-noise ratio (PSNR),
which is defined by

PSNR(u∗, ũ) := 20 log10
NM

‖u∗ − ũ‖2F
,

where u∗ is the restored image, ũ is the ground truth, and N , M are the number of
pixels and the maximum peak value of ũ, respectively. According to PSNR, using the
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.
H3 norm as the objective function produces the best recovery. We also demonstrate
that all the three strong semi-norms can effectively suppress the low-frequency noise
in Fig. 5c without changing the reflecting features of the underlying image.

4.2 FullWaveform Inversion

Here we present a full waveform inversion (FWI) example. It is a nonlinear inverse
problem where one aims to invert parameter u (usually the wave velocity) given the
observed data g (usually the wave pressure field) through a nonlinear relationship
F(u) = g. The forward operator is implicitly given through the wave equation con-
straint. More specifically, we denote by D ⊂ R

d−1 ×R
+ ⊂ R

d the upper half space,
and T ⊂ [0,∞) the temporal domain with |T | < ∞. Let s(x, t) = w(t)δ(x − xs)
be a point source, where the source location xs ∈ D, and the time-dependent function
w(t) ∈ H1(T ) ⊂ L∞(T ). We consider the unknown parameter (squared slowness)
u ∈ L∞(D). Let v ∈ L2(D; L2(T )) solve the following wave equation

⎧
⎪⎨

⎪⎩

u(x) ∂2v
∂t2

(x, t) − Δv(x, t) = s(x, t) (x, t) ∈ D × T ,

v(x, 0) = 0, ∂v
∂t (x, 0) = 0 x ∈ D,

∇xv(x, t) · n = 0 x ∈ ∂D.

(29)

Let R : L2(D; L2(T )) �→ L2(D0; L2(T )) be a bounded linear observation operator
where D0 ⊂ D denotes the set of receivers. The observed data g = Rv. Thus, the
forward operator F : L∞(D) �→ L2(D0; L2(T )) maps u to g and is implicitly given
through the wave equation.

The nonlinear inverse problem is often reformulated as a PDE-constrained opti-
mization problem where one aims to find the optimal u by minimizing the difference
between the observed data g and the simulated data F(u) evaluated at the current
prediction of u. While the least-squares method, i.e., using the squared L2 norm as the
data fidelity term, has been the conventional choice, and an additional regularization
term is often added, here we consider only the general Hs data-fitting term as the
objective function. That is,

min
u∈L∞(D)

1

2
‖F(u) − g‖2Hs . (30)

Since the data F(u), g ∈ L2(D0 × T ), (30) is well defined for s � 0. We perform
optimization using different s values and demonstrate its impacts on the inversion.

The true velocity parameter is presented in Fig. 6a and all the tests start with the
same initial guess shown in Fig. 6b. We use the L-BFGS method [46] to solve for
(30) and manually stop the iterative process after 200 iterations. The inversion result
using the L2 norm (corresponding to s = 0) is shown in Fig. 6c. It converges to a
local minimum with many wrong features compared to the ground truth. Similarly,
when using the H−0.5 norm, the layers in the recovered subsurface image in Fig. 6d
do not match their true locations, despite a slight improvement from the L2-based
result. When using the H−1 norm, the reconstruction is qualitatively much better as
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Fig. 6 FWI example for Sect. 4.2: (a) true velocity; (b) initial guess; (c)-(e) reconstructions after 200
iterations using the L2, H−0.5, and the H−1 norms, respectively; (f) reconstruction using the H−1 in the
first 100 iterations followed by another 100 iterations using the L2 norm

the structural properties of the inverted velocity image become very close to the ground
truth, as one can see in Fig. 6e.

Since this is a nonlinear inverse problem, the resulting optimization problem (30)
is highly non-convex. The problem that the iterates are trapped at the local minima
is often referred to as cycle skipping in FWI [63]. We expect that the change of the
objective function modifies the optimization landscape. It is well known that low-
frequency components of the wave data are less likely to suffer from cycle skipping
[13]. As we have discussed in Sect. 2.2, when s < 0, the Hs norm has a natural bias
toward the low-frequency content of the input, and the smaller the s, the stronger the
bias. Hence, it is not surprising to see that with the same initial guess, H−1 norm as
the objective function can converge to the global minima, while the L2 norm and the
H−0.5 norm get stuck at local minima.

On the other hand, the H−1 inversion in Fig. 6e lacks high resolution despite having
most of the correct features. Again, it is a property of the weak norm (s < 0). It is
usually the high-frequency components of the data g that resolve the sharp features in
the reconstructed parameter u. However, the high-frequency components of the data,
including both the useful physical information and the high-frequency noise, are given
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much smaller weight in a weak norm, resulting in a low-resolution reconstruction. We
have commented on this phenomenon earlier in Remark 3. This dilemma can be
mitigated by performing a transition of the objective function. For example, one can
first use the H−1 norm as the objective function to take advantage of the bigger basin
of attraction. Once the iterate is close to the ground truth, one can switch to stronger
norms such as the L2. In Fig. 6f, we perform a transition of the objective function from
H−1 after 100 iterations of L-BFGS to the L2 norm for another 100 iterations. The
resolution of the reconstruction is visibly improved compared to 200 iterations of the
H−1 norm alone as shown in Fig. 6e. A more rigorous analysis on how to adaptively
update s will be left to future work.

5 A Case Study of Using Total Variation

The natural implicit regularization effects of the Hs norm could be further enhanced
by combining with a regularization term, such as the TV regularization. There have
been two main directions related to the combination in the literature.

First, minimizing the total variation energy under the general Hs Sobolev space has
been studied both numerically and theoretically [29, 30, 35, 54]. In such frameworks,
the objective function is solely the TV energy, while the model parameter u is assumed
to belong to the Hs functional space. Our work here is different from the literature
since we fix the parameter space to be L2 and consider the objective function to be Hs

or possibly Hs together with a regularization term. As a result, the objective function
explicitly includes the Hs norm, equivalent to the assumption that the data space (as
opposed to the model parameter space) is Hs .

The secondmain direction in the literature is more relevant to our work. Combining
the H−1 data-fitting term with the TV regularization was first studied in [48] and
later generalized to any negative Sobolev norm in [39]. The literature mainly focuses
on image decomposition by using TV to single out a cartoon (piece-wise constant)
image and the Hs norms for oscillatory components like textures and noises. Two
recent works [19, 33] further propose to decompose a signal or an image into three
components: a piece-wise constant component, a smooth (low-oscillating) component,
and a high oscillatory component, the last of which is modeled by H−1.

We advocate using the data fidelity term of the Hs norm by itself as an implicit
regularization effect on images. However, the frequency biases induced by the Hs

norm do not work so well on natural images due to complicated structures that spread
out the entire frequency domain. As a result, image restoration requires an explicit
regularization term to ensure satisfactory results. To this end, we present a proof-of-
concept idea by incorporating the TV regularization together with the Hs-based data
fidelity term. As Hs reduces to the L2 metric for s = 0, we expect any regularization
term combined with the Hs would outperform the one with the standard least-squares
misfit by treating s as a tunable hyperparameter.

We also present a new algorithm to minimize the Hs norm with the TV regu-
larization based on ADMM, as detailed in Sect. 5.1. Under this efficient algorithmic
framework, we then numerically investigate the power of combining the Hs data-
fitting term together with the TV regularization by presenting the deblurring examples
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in Sect. 5.2. The numerical results demonstrate that Hs+TV, as a more general frame-
work, outperforms the traditional L2+TV, making it a promising choice in image
processing.

5.1 An Numerical Algorithm for Minimizing TV regularization and Hs Data-Fitting
Term

We revisit the celebrated TV regularization [52] for image restoration that minimizes
the following energy functional over the bounded-variation (BV) space [61]

min
u∈BV(Ω)

J (u) = λ

2
‖Au − fσ ‖2Hs + μ‖∇u‖L1 , (31)

where λ,μ ∈ R
+ are scalars balancing the data-fitting term, Ω = [0, 1]2 ⊂ R

2 is
a unit square, and the regularization term. We include two parameters λ,μ for the
ease of disabling either one of them in experiments. We consider the linear operator
A : BV(Ω) �→ L2(Ω) a convolution operator, and fσ is the noisy blurry data. Osher,
Solé, and Vese first proposed the framework (31) for the case s = −1 [48], which was
later generalized by Lieu andVess in [39] to any s < 0. Here, we extend the framework
and apply it to any s ∈ R. Moreover, we regard s as a tunable hyperparameter, together
with λ and μ in (31).

We discuss the discretization of the model (31). Suppose a two-dimensional (2D)
image function is defined on anm×n Cartesian grid. By using a standard linear index,
we can represent a 2D image as a vector, i.e., the ((i −1)m+ j)-th component denotes
the intensity value at pixel (i, j). We define a discrete gradient operator,

Du :=
[
Dx

Dy

]

u, (32)

where Dx , Dy are the finite forward difference operator with the periodic boundary
condition in the horizontal and vertical directions, respectively. We adopt the periodic
boundary condition for the finite difference scheme to alignwith the periodic boundary
condition when implementing the discrete convolution operator A by the fast Fourier
transform (FFT). We denote N := mn and the Euclidean spaces by X := R

N ,Y :=
R
2N , then u ∈ X , Au ∈ X , and Du ∈ Y .
The Hs norm can be expressed in terms of the weighted norm, which is equivalent

to the multiplication of Ps , the discrete representation of the operator Ps . Given the
choice of s and the particular boundary condition, we can select a preferable way of
implementing Ps as any of the three types of matrices Ps , P̂s , and P̃s discussed in
Sect. 3. To align with the periodic boundary condition used for D and A, we choose
Ps = Ps . In summary, we obtain the following objective function in a discrete form,

J (u) = λ

2
‖Ps(Au − fσ )‖22 + μ‖Du‖1. (33)
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There are a number of optimization algorithms available to minimize J (u) in order
to find the optimal solution u, such as primal-dual algorithms [16, 27], dual projection
method [15], and Bregman iterations [32, 47]. Here, we present the alternating direc-
tion method of multipliers (ADMM) [9, 31], by introducing an auxiliary variable d
and studying an equivalent form of (33)

min
u∈X ,d∈Y

μ‖d‖1 + λ

2
‖Ps(Au − fσ )‖22 s.t. d = Du. (34)

Here, we keep both μ and λ to include the scenario without the TV term, i.e., μ = 0.
The corresponding augmented Lagrangian function is expressed as

L(u, d; v) = μ‖d‖1 + λ

2
‖Ps(Au − fσ )‖22 + 〈ρv,Du − d〉 + ρ

2
‖d − Du‖22, (35)

with a dual variable v and a positive parameter ρ. The ADMM framework involves
the following iterations,

⎧
⎨

⎩

u(k+1) = argminuL(u, d(k); v(k)),

d(k+1) = argmindL(u(k+1), d; v(k)),

v(k+1) = v(k) + Du(k+1) − d(k+1).

(36)

By taking the derivative of L with respect to u, we obtain a closed-form solution
of the u-subproblem in (36), i.e.,

u(k+1) =
(
λATPT

s Ps A + ρDTD
)−1 (

λATPT
s Ps fσ + DT (d(k) − ρv(k))

)
. (37)

We remark that −DTD is the discrete Laplacian operator with the periodic bound-
ary condition. In this case, the discrete operators (matrices), A, AT , PT

s Ps , and
DTD all have the discrete Fourier modes as eigenvectors. As a result, the matrix
λATPT

s Ps A+ρDTD in (37) shares the Fourier modes as eigenvectors, and its inverse
can be computed efficiently by FFT.

The d-subproblem in (36) has also a closed-form solution given by

d(k+1) = shrink
(

∇u(k+1) + v(k),
μ

ρ

)

, (38)

where shrink(v, β) = sign(v) ◦ max {|v| − β, 0} with the Hadamard (elementwise)
product ◦. Finally, v(k+1) is updated based on u(k+1) and d(k+1). The iterative process
continues until reaching the stopping criteria or the maximum number of iterations.

5.2 Image Deblurring

We start this subsection by expanding the deblurring example in Sect. 2.2. In partic-
ular, we conduct a comprehensive study of the Hs norms with different choices of s
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Table 1 Deblurring the Square image comparison among different Hs norms in terms of PSNR. Visual
results corresponding to the second and the third rows are shown in Fig. 2

Add T V Noise σ input s = 0 s = −0.25 s = −0.5 s = −0.75 s = −1

No 0 24.25 194.57 194.57 194.57 194.57 194.57

No 0.1 18.61 9.46 19.62 21.63 17.38 14.09

No 0.5 5.95 −14.57 −3.05 7.54 16.29 18.12

Yes 0.1 18.61 39.03 39.49 39.85 40.16 40.39

Yes 0.5 5.95 27.67 27.99 28.23 28.39 28.44

Fig. 7 Illustrating how the PSNR value depends on different Hs norms for deblurring the Square image
without regularization. The optimal s varies with the noise intensity. For a larger noise variance, it is
preferable to select a weaker norm (corresponding to a smaller s)

under a variety of noise levels and whether the TV regularization term is included in
the objective function or not. We remark that the noise here is high-frequency Gaus-
sian noise. The PSNR values in different settings of deblurring the Square image are
recorded in Table 1.

The first row of Table 1 is about the reconstruction without using TV from noise-
free data, i.e., σ = 0. All the PSNR values are all over 190, which implies the
perfect recovery (subject to numerical round-off errors). In this noise-free case, the
reconstruction is a standard (weighted) least-squares solution. Furthermore, the choice
of the data-fitting term does not affect the minimizer of the optimization problem,
though the convergence rate may differ. As seen in Fig. 1, the same number of gradient
descent iterations yields different sharpness when s varies.

Still without the regularization term, we examine the results using the noisy blurry
data and record the PSNR values in the second and the third rows of Table 1. These
quantitative values reflect that the reconstruction results after a fixed number of gradi-
ent descent iterations (11) differ drastically with respect to different s values, as also
illustrated in Fig. 2. We plot the PSNR values with more s values in Fig. 7 than those
documented in Table 1, which further illustrates that the optimal choice of s depends
on the noise level.

The effect of the TV regularization is presented in the last two rows of Table 1.
On one hand, TV significantly improves the results over the model without TV. On
the other hand, using the optimal Hs norm as the data-fitting term together with TV
outperforms the classic TV with the L2 norm, as the former has an extra degree of
freedom.

We further test on two images: Circles and Cameraman, for image deblurring. The
blurring kernel is fixed as a 7 × 7 Gaussian function with the standard deviation of
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Table 2 We fix μ = 1 and list
other optimal parameters for TV
and the proposed method

Test image Noise level TV proposed

σ λ ρ s λ ρ

Circles 0.1 10 200 −1.6 18 380

0.2 5 500 −2.5 8 500

Cameraman 0.1 40 2,500 −0.2 40 50

0.2 12.5 50 0.5 10 50

Table 3 Image deblurring comparison in terms of PSNR

Test image σ Input TV Hyper BM3D WAI Proposed

Circles 0.1 19.78 32.56 30.61 32.52 31.96 32.93

0.2 13.91 29.84 28.10 29.97 29.78 30.03

Cameraman 0.1 18.96 24.52 24.54 25.49 24.40 24.53

0.2 13.65 22.89 22.75 23.53 22.92 22.96

(a) Noisy Input (b) TV (c) Hyper

(d) BM3D (e) WAI (f) proposed

Fig. 8 Comparison of deblurring the Circles image with a 7× 7 Gaussian blur and additive Gaussian noise
of σ = 0.1

1. By assuming the periodic boundary condition and using the Convolution Theorem,
the linear operator A can be implemented by FFT. We also consider two noise levels:
σ = 0.1 and 0.2 as the standard deviation of the additive Gaussian random noise. We
compare the proposed approach Hs+TV with TV, a hyper-Laplacian model (Hyper)
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(a) Noisy Input (b) TV (c) Hyper

(d) BM3D (e) WAI (f) proposed

Fig. 9 Comparison of deblurring the Cameraman image with 7 × 7 Gaussian blur and additive Gaussian
noise of σ = 0.1

[36], a modification of BM3D from denoising to deblurring [21], and a weighted
anisotropic and isotropic (WAI) regularization proposed in [43]. We use the online
codes of the competing methods: Hyper, BM3D, andWAIwith their default parameter
choices. For TV and the proposed approach, we fix μ = 1 and tune the parameters
of λ, ρ, and s so that they can achieve the highest PSNR for each combination of
testing image and noise level. Typically, the stronger the noise, the smaller the optimal
s value. However, for the Cameraman image polluted by the large noise, the optimal
s value is positive to counterbalance the smoothing incurred by the TV regularization
term. We provide the optimal parameter values in Table 2 and record the PSNR values
in Table 3. Visually we present the deblurring results under a lower noise level (σ =
0.1) in Fig. 8-9. The proposed approach works particularly well for images with
simple geometries such as Circles, and is comparable to the state-of-the-art deblurring
methods for theCameraman image.Motivated by theBM3Dalgorithm,we think using
a state-dependent s instead of a fixed global s can improve the performance.

6 Conclusions

In this paper, we proposed a novel idea of using the Sobolev (Hs) norms as a data
fidelity term for imaging applications. We revealed implicit regularization effects
offered by the proposed data-fitting term rather than the commonly used regularization
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term. Specifically, we shall choose a weak norm (s < 0) for high-frequency noises
and a strong norm (s > 0) for low-frequency noises. The more oscillatory the high-
frequency noise, the smaller the s. The smoother the low-frequency noise, the larger
the s. This rule of thumb helps us choose an initial guess for the parameter s, which
is further locally tuned in the experiment. We discussed the connections between the
Sobolev norm and the Sobolev gradient flow. From a Bayesian inference perspective,
we analyzed the underlying noise assumption for a Sobolev norm as the data fidelity
term.We further revealed that one could choose a proper Sobolev norm as an objective
function to improve the convergence rate in gradient descent, achieving precondition-
ing effects. We presented three numerical schemes to compute the Hs norms under
different domains and boundary conditions. Experimental results showed that the Hs

data-fitting term alone as the objective function has implicit regularization effects on
the performance of various inverse problems. Furthermore, the Hs data-fitting term
combined with the TV regularization, i.e., Hs+TV, works particularly well for images
with simple geometries and always outperforms the standard L2+TV. In the framework
ofADMM, one can efficientlyminimize the Hs+TVmodelwith a tunable parameter s.
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