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Maintaining the stability and shape of a plasma is a crucial task in many technological 
applications ranging from beam shaping to fusion energy. This is often challenging as plasma 
systems tend to be naturally unstable and kinetic effects can play an important role in the behavior 
of the instabilities. Due to the large energies involved, the primary way to control plasma systems 
is the application of external electromagnetic fields.

In this work, we deploy a PDE-constrained optimization formulation that uses a kinetic 
description for plasma dynamics as the constraint. This is to optimize, over all possible 
controllable external electric fields, the stability of the plasma dynamics under the condition 
that the Vlasov–Poisson (VP) equation is satisfied. Mathematically we formulate it as a PDE-

constrained optimization. For computing the functional derivative with respect to the external 
field in the optimization updates, the adjoint equation is derived. Furthermore, in the discrete 
setting, where we employ the semi-Lagrangian method as the forward solver, we also explicitly 
formulate the corresponding adjoint solver and the gradient as the discrete analogy to the 
adjoint equation and the Fréchet derivative. A distinct feature we observed of this constrained 
optimization is the complex landscape of the objective function and the existence of numerous 
local minima, largely due to the hyperbolic nature of the VP system. To overcome this issue, 
we utilize a gradient-accelerated genetic algorithm, leveraging the advantages of the genetic 
algorithm’s exploration feature to cover a broader search of the solution space and the fast local 
convergence aided by the gradient information. We show that our algorithm obtains good electric 
fields that are able to maintain a prescribed profile in a beam shaping problem and uses nonlinear 
effects to suppress plasma instability in a two-stream configuration.

1. Introduction

The stability of plasma systems remains an active area of research. Plasma instabilities, which are responsible for many phenom-

ena observed in astrophysical plasma (see, e.g., [67]), are a key focus of the investigation. However, in engineering applications, the 
focus is often on shaping the plasma in a specific manner, such as beam shaping in particle accelerators [23], or confining the plasma, 
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such as in fusion reactors [62]. In these cases, instabilities can cause potentially dangerous disruptions to the intended operation 
mode, leading to loss of confinement and the deposition of large amounts of energy at the walls of the device. Magnetohydrodynam-

ics, a fluid model, is commonly used to study stability in the context of magnetic confinement fusion [50].

However, stability in the fluid regime does not necessarily guarantee stability when kinetic effects are taken into account [69,13]. 
In fact, the system’s behavior is much more complex, as even spatially homogeneous equilibrium distributions can exhibit interesting 
behavior. One such example is the celebrated Landau damping, which was conjectured by Landau [48], experimentally confirmed 
in [53], and mathematically proven in [54]. It is a physical phenomenon where waves propagating through plasma can be damped 
due to the interactions between the waves and the charged particles. Specifically, as the wave travels through the plasma, it creates 
a fluctuating electric field that causes the charged particles to oscillate. These oscillations then interact with the wave, causing it to 
lose energy and dampen its amplitude. In contrast, the configuration of two spatially homogeneous beams is unstable and leads to an 
exponential increase in the electric field as well as a drastic change in the distribution function [59,13]. This is the famous two-steam 
instability.

Mathematically, the problem can be formulated as a PDE-constrained optimization problem. The Vlasov–Poisson equation acts 
as the constraint, while the optimization process determines the external electric field to achieve maximum plasma stability. The 
objective functionals we use minimize the mismatch between the Vlasov–Poisson solution and a predetermined state at a fixed time 
horizon.

For the time and space discretization, we use a Strang splitting-based semi-Lagrangian discontinuous Galerkin approach 
[21,56,60]. Splitting-based semi-Lagrangian schemes are commonly used for the simulation of kinetic problems as they reduce a 
(potentially) high-dimensional Vlasov–Poisson or Vlasov–Maxwell problem to a sequence of one-dimensional advection, are free of 
any CFL (Courant–Friedrichs–Lewy) condition, and do not suffer from the numerical noise inherent in particle methods (see, e.g., 
[32]). In the case of the semi-Lagrangian discontinuous Galerkin approach, they are also completely local (which has, for example, 
benefits on high-performance computing and GPU-based systems; see e.g. [29]). However, this property also helps derive the adjoint 
equations required to compute the gradient in our optimization algorithm. Another popular method to conduct high dimensional sim-

ulations for the Vlasov–Poisson or Vlasov–Maxwell equations is the particle-in-cell (PIC) method [18,3,58,40], which approximates 
the distribution function by superparticles with a weighted representation, and to follow the trajectories of those superparticles.

It is very important that we take the discretized form of the equations into account when deriving the adjoint solver (called the 
discretize-then-optimize approach) [52]. Otherwise, a careless discretization of the continuous adjoint equation (called the optimize-

then-discretize approach) may yield an inconsistent numerical scheme with respect to the discretization for the forward equation, 
resulting in a low-order or even incorrect gradient computation [38]. Due to the symmetric nature of Strang splitting and the simple 
characteristics that result from it, the adjoint solver (i.e., the backward problem) takes a form that is very similar to that of the 
forward problem. Therefore, only minimal modifications to the forward solver are required to produce the adjoint, which would 
finally feed into the optimization pipeline.

The past decades have seen drastic advances in kinetic-equation-based inverse problems, optimal control, and optimal design, 
many of which fall within the PDE-constrained optimization framework. In particular, for various applications, the kinetic models 
employed include the radiative transport equation [57,4,51,14,24], Boltzmann equation [1,61,10], Fokker–Planck equation [15,2,

34], and the Vlasov–Poisson system and its drift-diffusion limit [17,49,9,8]. Many of the problems involve determining unknown 
parameters in kinetic equations, and the numerical strategy is to deploy the optimization process that looks for the value of the 
unknown parameter that minimizes the difference between the PDE-simulated data and the true experimental data, hence formulating 
a PDE-constrained optimization. PDE-constrained optimization is extensively studied for elliptic and hyperbolic PDEs [39], and its 
specific use for kinetic models is comparatively less heavily investigated, partially due to the high computational cost in the forward 
simulation: Kinetic models are usually posed on phase domains with spatial and velocity directions both needing to be resolved, 
making each optimization iteration expensive to compute.

The Vlasov–Poisson (VP) equation is the primary focus of this paper. The equation is widely used in semiconductor studies 
and fusion energy. In particular, the voltage-to-current map is utilized to reconstruct the doping profile in the VP system in the 
semiconductor industry [17,49,9,8]. For fusion energy studies, Glass and Han-Kwan investigated the controllability of the system 
in [35,36], where the external force term serves as the control. In a series of papers [45–47], Knopf and collaborators examined the 
optimal control problem for this system with the external magnetic field to be tuned. More recently, a mathematical analysis of a PDE-

constrained optimization problem for the Vlasov–Poisson system with an external magnetic field and particle-in-cell discretization 
was conducted in [6], a setting that is relevant for the equilibrium configuration of fusion reactors.

We consider two applications of the proposed optimization algorithm in this work. First, we consider a focusing problem, where 
the goal of applying an external electric field is to maintain a specific localized shape of the distribution function (this is related to, 
e.g., beam shaping problems). Second, we show that the optimization algorithm can be used to suppress the onset of the two-stream 
instability. Since the two-stream instability is unstable in the linear theory, the optimization algorithm has to find a nonlinear effect 
in order to suppress the unstable modes. This is accomplished by exciting certain higher modes via the external electric field that then 
mixes nonlinearly with the unstable modes in a beneficial way. In both cases, we observe that the optimization landscape consists of 
many local minima, even by parametrizing the external electric field. To overcome this, we use a genetic optimization algorithm to 
produce candidate solutions. The candidate solutions are then polished using the developed gradient-based optimization algorithm. 
This hybrid approach improves the convergence of the algorithm significantly.

The rest of the paper is organized as follows. In Section 2, we formulate the optimization problem constrained by the Vlasov–

Poisson equation introduced below in Section 1.1 and derive the adjoint equation and the gradient formula on the continuous level 
2

using first-order optimality conditions. In Section 3, we first present the semi-Lagrangian discretization for the Vlasov–Poisson system. 
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We then derive the corresponding consistent adjoint system and the gradient formulation through first-order optimality conditions. 
The relationship between the two adjoint systems in Section 2 and Section 3 is discussed in Remark 3.4. In Sections 4 and 5, we 
present two concrete control examples, one on maintaining the focusing beams and one on suppressing the two-stream instabilities. 
The conclusion follows in Section 6.

1.1. The Vlasov–Poisson system

In this paper, we consider the Vlasov–Poisson equation with external electric field

⎧⎪⎨⎪⎩
𝜕𝑡𝑓 + 𝑣 ⋅∇𝑥𝑓 −𝐸t

𝑓
⋅∇𝑣𝑓 = 0 ,

𝐸t
𝑓
=𝐻 +∇𝑥𝑉𝑓 ,

Δ𝑉𝑓 = 1 − 𝜌𝑓 (𝑡, 𝑥) = 1 − ∫ 𝑓d𝑣 ,
(1.1)

where 𝑓 (𝑡, 𝑥, 𝑣) stands for the density of plasma particles on the phase space (𝑥, 𝑣) ∈ ℝ2𝑑 at a particular time 𝑡 ∈ℝ+. Here, 𝑑 is the 
dimension of both the spatial and velocity spaces. Along the characteristics, plasma moves according to the dynamics

�̇� = 𝑣 , �̇� = −𝐸t = −(𝐻 +∇𝑉𝑓 ) ,

where the electric field 𝐸t is composed of an external component 𝐻 , and a self-imposed contribution ∇𝑥𝑉𝑓 . The potential 𝑉𝑓 (𝑡, 𝑥)
satisfies the Poisson equation at every fixed time 𝑡, where the source term depends on the plasma’s own density function 𝜌(𝑡, 𝑥). 
This is to model the situation where particles pose repulsion to each other as the point charge potential 1∕𝑟, and thus self-generate 
potential. We denote the initial condition as:

𝑓 (𝑡 = 0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣) .

The global existence of classical solution to the VP system (1.1) is established in one, two and three spatial dimensions respectively 
in [41,66,5,55].

Without external electric field 𝐻 = 0, any initial data that only depends on 𝑣 is an equilibrium. Indeed, let 𝑓0(𝑥, 𝑣) = 𝑓 eq(𝑣). Then 
the solution would be trivially 𝑓 (𝑡, 𝑥, 𝑣) = 𝑓 eq(𝑣), making that ∇𝑥𝑓 = 0 and 𝐸 =𝐻 +∇𝑥𝑉𝑓 = 0.

2. A PDE-constrained optimization problem

The problem is formulated into a PDE-constrained optimization, with the objective functional 𝐽 measuring the instability. Suppose 
the desired property is to force the distribution 𝑓 (𝑇 , ⋅, ⋅) to be as close as possible to a given equilibrium state 𝑓 eq. Then 𝐽 is:

𝐽 (𝑓 [𝐻]) = 1
2
‖𝑓 [𝐻](𝑇 ) − 𝑓 eq‖2

𝐿2(𝑥,𝑣)
. (2.1)

Here we abbreviate 𝑓 (𝑇 ) to denote the distribution function over the phase space at time 𝑇 , and we take the 𝐿2 norm in both the 
spatial and velocity spaces to measure the difference. The goal is to tune the external electric field 𝐻 so that 𝐽 (𝑓 [𝐻]) is minimized. 
The notation 𝑓 [𝐻] reflects 𝑓 ’s dependence on 𝐻 through the VP system (1.1).

In an experimental setup, plasma is confined in a circular domain. Mathematically, this amounts to viewing 𝑦, 𝑧-domain as 
constant, and presenting the 3D problem as a pseudo-1D problem with periodic boundary condition, so 𝑥 ∈ 𝕋 and 𝑣 ∈ ℝ. In this 
setting, the VP system can be simplified, and we arrive at the following formulation:

min
𝐻

𝐽 (𝑓 [𝐻]) (2.2a)

s.t.

⎧⎪⎨⎪⎩
𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 − (𝐻 +𝐸[𝑓 ])𝜕𝑣𝑓 = 0
𝐸[𝑓 ] = 𝜕𝑥𝐺 ∗ (1 − 𝜌𝑓 )
𝑓 (𝑡 = 0, 𝑥, 𝑣) = 𝑓0 = 𝑓 eq + 𝑓,

(2.2b)

where 𝑓 [𝐻] stands for the PDE solution 𝑓 given the source 𝐻 , 𝐸[𝑓 ] is the density-induced electric field generated by the Poisson 
kernel convolving with the density. Here, 𝐺(⋅) is Green’s function to the 1D Poisson equation with periodic boundary condition, 
i.e., 𝐺′′ = 𝛿0. Due to the homogeneity of the media in the Poisson equation, the internal field 𝜕𝑥𝑉 can be explicitly written as a 
convolution with this Green’s function. The quantity 𝜌𝑓 , by convention, is the density in space:

𝜌𝑓 (𝑡, 𝑥) = ∫ 𝑓 (𝑡, 𝑥, 𝑣)d𝑣 .

The initial condition 𝑓0 is assumed to be a small perturbation from a given equilibrium 𝑓 eq, namely 𝑓 ≪ 1.

The objective of this optimization problem is to find an external field 𝐻 that can suppress the perturbation induced by 𝑓 and 
drive the system back to 𝑓 eq within the time frame of [0, 𝑇 ]. For the specific form stated in (2.1), our aim is to bring the distribution 
at time 𝑇 close to the equilibrium state. It is worth noting that different stability conditions surrounding the various equilibrium 
3

states can pose different levels of challenges. Landau damping automatically sends the evolution towards equilibrium, even without 
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the external 𝐻 , and the introduction of 𝐻 is expected to accelerate this damping process. On the other hand, two-stream simulation 
is inherently unstable, and 𝐻 is crucial in stabilizing the system, making the design substantially more challenging.

2.1. Lagrangian multiplier

A typical approach to execute the optimization (2.2) is to run gradient-based optimization method, which necessitates the com-

putation of the functional derivative d𝐽d𝐻 . However, like many other PDE-constrained optimization problems, the objective functional 
𝐽 implicitly depends on 𝐻 through the PDE constraints, making explicit computation challenging. One solution to this challenge is 
to introduce the Lagrangian multiplier and utilize an adjoint-state solver [7]. This is the approach we will take in this work.

To be specific, denoting by 𝑔(𝑡, 𝑥, 𝑣) the multiplier for the VP equation and 𝜂(𝑥, 𝑣) the multiplier for the initial condition, we 
define the Lagrangian:

𝐿(𝑓,𝐻,𝑔, 𝜂) = 𝐽 (𝑓 ) − ⟨𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 − (𝐻 + 𝜕𝑥𝐺 ∗ (1 − 𝜌))𝜕𝑣𝑓 , 𝑔⟩𝑥,𝑣,𝑡 − ⟨𝑓 (𝑡 = 0) − 𝑓0, 𝜂⟩𝑥,𝑣 . (2.3)

The original problem (2.2) then translates to an unconstrained formulation with 𝑓 separated from its dependence on 𝐻 :

min
𝑓,𝐻,𝑔,𝜂

𝐿(𝑓,𝐻,𝑔, 𝜂) .

Note that the argument to be minimized is now changed to the whole set of (𝑓, 𝐻, 𝑔, 𝜂). The first-order optimality condition requires 
the following:

𝜕𝑔𝐿 = 0 , 𝜕𝑓𝐿 = 0 , 𝜕𝐻𝐿 = 0 , and 𝜕𝜂𝐿 = 0 .

The first equation corresponds directly to the requirement that the PDE constraints in (2.2b) must hold, and the second equation 
leads to the adjoint equation that 𝑔 needs to satisfy. More precisely, we perform integration by parts of (2.3), to move all the (partial) 
derivatives from 𝑓 to 𝑔. That is, upon a straightforward calculation:

𝐿(𝑓,𝐻,𝑔, 𝜂)

= 𝐽 (𝑓 ) − ⟨𝑓 (𝑡 = 𝑇 ), 𝑔(𝑡 = 𝑇 )⟩𝑥,𝑣 + ⟨𝑓 (𝑡 = 0), 𝑔(𝑡 = 0)⟩𝑥,𝑣
+ ⟨𝑓 , 𝜕𝑡𝑔 + 𝑣𝜕𝑥𝑔 −𝐻𝜕𝑣𝑔⟩𝑥,𝑣,𝑡 − ⟨𝑓 (𝑡 = 0) − 𝑓0, 𝜂⟩𝑥,𝑣
− ⟨𝜕𝑥𝐺 ∗ (1 − 𝜌𝑓 )𝑓, 𝜕𝑣𝑔⟩𝑥,𝑣,𝑡 ,

(2.4)

where we note that

⟨𝜕𝑥𝐺 ∗ 𝜌𝑓𝑓 , 𝜕𝑣𝑔⟩𝑥,𝑣,𝑡 = ⟨𝑓 (𝑡, 𝑥, 𝑣), ⟨𝜕𝑥𝐺(𝑥− 𝑦)𝑓 (𝑡, 𝑦,𝑤)𝜕𝑤𝑔(𝑡, 𝑦,𝑤)⟩𝑦,𝑤⟩𝑥,𝑣,𝑡 . (2.5)

Since the optimality condition requires

𝜕𝐿

𝜕𝑓
(𝑡, 𝑥, 𝑣) = 0 , 0 ≤ 𝑡 < 𝑇 , and

𝜕𝐿

𝜕𝑓 (𝑇 )
(𝑥, 𝑣) = 0,

the former, utilizing (2.4) and (2.5), yields the following adjoint equation after some calculations:

𝜕𝑡𝑔 + 𝑣𝜕𝑥𝑔 −𝐻𝜕𝑣𝑔 + [𝐺′ ∗ (𝜌𝑓 − 1)]𝜕𝑣𝑔 +𝐺′ ∗ ⟨𝑓, 𝜕𝑣𝑔⟩𝑣 = − 𝜕𝐽
𝜕𝑓

(𝑡, 𝑥, 𝑣) . (2.6)

The latter provides the final condition for the adjoint state 𝑔:

𝑔(𝑇 ,𝑥, 𝑣) = 𝜕𝐽

𝜕𝑓 (𝑇 )
(𝑥, 𝑣) = 𝑓 (𝑇 ) − 𝑓 eq . (2.7)

The differential equation (2.6) together with the final condition (2.7) form the adjoint equations that 𝑔 satisfies. Note that this 
requires us to solve 𝑔 backward in time (starting from the final condition and integrating until we reach time 𝑡 = 0).

To compute the gradient, first note that for the Lagrangian 𝐿 defined in (2.3), we have

𝜕𝐻𝐿 = ⟨𝜕𝑣𝑓 , 𝑔⟩𝑣,𝑡 .
Now if we restrict 𝑓 to the solution manifold of (2.2b), then the last two terms in 𝐿 vanish, and 𝐿 ≡ 𝐽 holds on this manifold, i.e., 
𝐿(𝑓 [𝐻]) = 𝐽 (𝑓 [𝐻]). Consequently,

𝜕𝐻𝐽 = 𝜕𝐻𝐿 = ⟨𝜕𝑣𝑓 , 𝑔⟩𝑣,𝑡 , (2.8)

where 𝑓 = 𝑓 [𝐻] solves the PDE constraint (2.2b) and 𝑔 = 𝑔[𝐻] solves the adjoint equations (2.6) and (2.7).

We remark that different choices of 𝐽 change (2.6) only through the source term on the right-hand side, and they determine 
the final-time condition for 𝑔(𝑇 , 𝑥, 𝑣) in (2.7). We also note that due to the nonlinearity of the last term in (2.4), the adjoint 
equation (2.6) does not have the same form as the forward problem—specifically, the last term on the left-hand side results from the 
quadratic nonlinearity. In sum, (2.6)-(2.7) provide the adjoint equation that 𝑔 needs to satisfy. The term adjoint variable is commonly 
4

used to refer to 𝑔, while the state variable is represented by the VP solution 𝑓 .
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2.2. Gradient-based method

To sum up, the derivative d𝐽d𝐻 is computed in (2.8) where 𝑓 satisfies the constraints in (2.2b) while 𝑔 satisfies (2.6) with the final 
condition given by (2.7). The two equations are solved forward and backward in time, respectively.

With the functional gradient in hand, executing the gradient-based optimization method is straightforward. We summarize the 
gradient descent applied in this particular setting in Algorithm 1.

Algorithm 1 GD for simulating (2.2).

Given 𝑓0 , 𝑓 eq , number of iterations 𝑖𝑡, and the initial guess 𝐻0

for 𝑛 = 0, 1, … , 𝑖𝑡 − 1 do

Compute 𝑓 [𝐻𝑛](𝑡, 𝑥, 𝑣) according to (2.2b);

Compute 𝑔[𝐻𝑛](𝑡, 𝑥, 𝑣) according to (2.6) and (2.7);

Assemble d𝐽
d𝐻

|||𝐻𝑛
= ⟨𝜕𝑣𝑓 [𝐻𝑛] , 𝑔[𝐻𝑛]⟩𝑣,𝑡 using (2.8);

𝐻𝑛+1 =𝐻𝑛 − ℎ d𝐽
d𝐻

|||𝐻𝑛
, where ℎ is determined by line search;

Evaluate 𝐽 (𝑓 [𝐻𝑛+1]) using (2.1).

end for

It is worth noting that for a crude estimate, one can proceed by designing numerical solvers for (2.2b) and (2.6) individually and 
assembling them in (2.8). This procedure is usually termed Optimize-Then-Discretize (OTD). This approach, however, may easily 
introduce incompatibility between forward and adjoint solvers, degrading the accuracy of the gradient computation and leading to 
slow convergence in optimization. See discussion in [39, Section 3.2.3] and [51].

One numerical strategy to overcome such incompatibility is, to begin with discretization and translate the PDE constraints into 
an algebraic system on which the optimization is performed. This approach is commonly referred to as the Discretize-Then-Optimize 
(DTO) approach. This approach considers only the discrete system, and the adjoint is naturally presented in the discrete setting. As a 
result, the compatibility is automatic, and accuracy is maintained during the final assembly of the functional gradient. This approach 
forms the basis of our discussion in Section 3.

3. Discretize-then-optimize formulation

In this section, we derive the discrete counterpart of the problem (2.2) and deploy the DTO approach to design the associated 
algorithm as a discrete analog of Algorithm 1. This approach calls for a preset discrete system to represent the PDE and the objective 
function, which we summarize in Section 3.1, and the adjoint derivation is provided in Section 3.2.

3.1. Discretization of the VP system and the objective function

There are many ways to discretize the VP system in time and space. The Eulerian methods, such as [32] and Lagrangian methods, 
such as [68], have both been widely used. We focus here on the semi-Lagrangian methods, which, for the VP system, date back 
to the seminal paper by Cheng & Knorr [16]. A main advantage of semi-Lagrangian methods is that they are fully explicit but still 
unconditionally stable, i.e., they do not suffer from a CFL condition.

The main idea of the semi-Lagrangian method is to trace back the characteristics exactly and perform the interpolation/projection 
approximately when the translated solution does not necessarily coincide with the grid points/approximation space. This can be done 
in a variety of ways. Both spline based [16,63,32] and Fourier based methods [43,44] have been used heavily. This work uses the 
more recently developed semi-Lagrangian discontinuous Galerkin approach [21,56,60,27]. Those methods are local, which has many 
advantages when implementing such problems on high-performance computing systems [29,25] and GPU based [26,28] systems. In 
the present context, however, the approach is convenient as we can write the scheme as an explicit matrix-vector product, which 
helps in deriving the adjoint equation (there is, e.g., no tridiagonal solve as is the case for spline interpolation).

To further tame the high dimensionality that may appear in the problem, the semi-Lagrangian methods are often combined with a 
(Strang) splitting procedure in order to reduce the problem to one-dimensional advection equations (i.e., the characteristics become 
extremely simple in this case). The splitting that we describe here is Hamiltonian and thus can be shown to give good long-time 
results with respect to energy conservation. It can also be generalized to higher-order (see [12]) and more complicated models (for 
the Vlasov–Maxwell system see [20]).

In the following, we detail our discretization procedure and provide a practical formula for gradient computation.

3.1.1. Time discretization with splitting

We perform the splitting in time to isolate the computation in space and velocity separately. Consider the uniform time step Δ𝑡
and denote 𝑡𝑛 ∶= 𝑛Δ𝑡. Then within each time step, to update the solution from time 𝑡𝑛 to time 𝑡𝑛+1, we split the PDE operator into

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 = 0 , and 𝜕𝑡𝑓 + (𝐸 +𝐻)𝜕𝑣𝑓 = 0 .

We define the operators 𝐴 = −𝑣𝜕𝑥, and 𝐵(𝐸) = (𝐸 +𝐻)𝜕𝑣. We also use 𝑓𝑛 as the short-hand notation for 𝑓 (𝑡𝑛, 𝑥, 𝑣) = 𝑓 (𝑛Δ𝑡, 𝑥, 𝑣). 
5

Then the solution writes, deploying the second-order Strang splitting scheme [30]:



Journal of Computational Physics 498 (2024) 112662L. Einkemmer, Q. Li, L. Wang et al.

𝑓𝑛+1 = 𝑒
Δ𝑡
2 𝐴𝑒Δ𝑡𝐵(𝐸

𝑛+1∕2)𝑒
Δ𝑡
2 𝐴𝑓𝑛 , (3.1)

where 𝐸𝑛+1∕2(𝑥) = 𝐸
[
𝑒
Δ𝑡
2 𝐴𝑓𝑛

]
is regarded as constant-in-time when deployed. Since each of these two operations can be executed 

exactly, we can analytically write down the action of these operations in the following updating procedure:

(1) Compute 𝑓⋆(𝑥, 𝑣) = 𝑓 (𝑡𝑛, 𝑥 − 𝑣Δ𝑡∕2, 𝑣).
(2) Compute 𝐸𝑛+1∕2(𝑥) by solving 𝜕𝑥𝐸𝑛+1∕2 = 1 − 𝜌𝑓⋆ .

(3) Compute 𝑓⋆⋆(𝑥, 𝑣) = 𝑓⋆(𝑥, 𝑣 + (𝐸𝑛+1∕2 +𝐻)Δ𝑡). Note that here 𝐸𝑛+1∕2 +𝐻 depends on space 𝑥 but not on time 𝑡.
(4) Compute 𝑓 (𝑡𝑛+1, 𝑥, 𝑣) = 𝑓⋆⋆(𝑥 − 𝑣Δ𝑡∕2, 𝑣).

Remark 3.1. To show this method provides second-order accuracy, as expected by the Strang splitting, one needs to verify that the 
𝐸𝑛+1∕2 computation is, in fact, a first-order approximation of 𝐸(𝑓𝑛+1∕2). Such error analysis amounts to comparing 𝜌𝑓⋆ with 𝜌𝑓𝑛+1∕2 . 
This can be done because, within each Δ𝑡,

𝜌𝑓⋆ = ∫ 𝑒
Δ𝑡
2 𝐴𝑓𝑛 d𝑣 = ∫ 𝑒

Δ𝑡
2 𝐵(𝐸

𝑛)𝑒
Δ𝑡
2 𝐴𝑓𝑛 d𝑣 = 𝜌𝑓 (𝑡=(𝑛+1∕2)Δ𝑡) +(Δ𝑡) ,

where we used the fact that 𝑒
Δ𝑡
2 𝐵(𝐸

𝑛)
is a translation in velocity space and thus does not change the velocity integration.

Another popular time-splitting choice is the Lie splitting

𝑓𝑛+1 = 𝑒Δ𝑡𝐵(𝐸0)𝑒Δ𝑡𝐴𝑓𝑛 .

Not only does this splitting provides only the first-order convergence, but also induces complication in the adjoint solver (see 
subsection 3.2). Instead, Strang splitting requires a symmetric application of the two operators, and the adjoint solver is more 
convenient:(

𝑒
Δ𝑡
2 𝐴𝑒Δ𝑡𝐵(𝐸

𝑛+1∕2)𝑒
Δ𝑡
2 𝐴

)∗

= 𝑒−
Δ𝑡
2 𝐴

(
𝑒Δ𝑡𝐵(𝐸

𝑛+1∕2)
)∗
𝑒
−Δ𝑡

2 𝐴 , (3.2)

where we used ∗ to denote the adjoint. Thus, for the linear case, i.e., where 𝐸𝑛+1∕2 is independent of time and considered an external 
input, we get the original scheme (3.1) except that Δ𝑡 is replaced with −Δ𝑡.

Then similar to the notation above, it is tempting to define

𝑔𝑛,⋆⋆ = 𝑒−
Δ𝑡
2 𝐴𝑔𝑛 , 𝑔𝑛,⋆ =

(
𝑒Δ𝑡𝐵(𝐸

𝑛+1∕2)
)∗

and 𝑔𝑛−1 = 𝑒−
Δ𝑡
2 𝐴𝑔𝑛,⋆ . (3.3)

3.1.2. Semi-Lagrangian scheme in space

To proceed, we also divide the phase space into cells 𝐶𝑖𝑗 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] × [𝑣𝑗−1∕2, 𝑣𝑗+1∕2] of size Δ𝑥 ×Δ𝑣, with (𝑖, 𝑗) ∈ [1, 𝑛𝑥] ×
[1, 𝑛𝑣]. In each cell, we approximate 𝑓𝑛(𝑥, 𝑣) by a constant value that is denoted by 𝖿𝑛

𝑖𝑗
. Denoting 𝜒 as the characteristic function, our 

approximation is

𝑓𝑛(𝑥, 𝑣) ≈
∑
𝑖𝑗

𝖿𝑛𝑖𝑗 𝜒𝐶𝑖𝑗 (𝑥, 𝑣) . (3.4)

To simplify the notation we concatenate 𝖿𝑛 for:

𝖿𝑛 = [𝖿𝑛𝑖𝑗 ]
𝑛𝑥,𝑛𝑣
𝑖=1,𝑗=1 ∈ℝ𝑛𝑥×𝑛𝑣 . (3.5)

What we describe here and in the following is the simplest case of a semi-Lagrangian discontinuous Galerkin scheme. In general, the 
assumption of having a piecewise constant function can be replaced by piecewise polynomials in order to obtain a numerical method 
of higher order (for more details see [21,56,60,27]). This has the advantage that, in many applications, we require fewer cells and 
that numerical diffusion is reduced. While in the following, for the sake of simplicity, we only consider the piecewise constant case 
(which gives a second-order scheme in space), let us emphasize that the same can be done for the higher-order variants. This is 
possible since the general structure of the update, which can be written as the linear combination of the degrees of freedom in two 
adjacent cells, also holds true for higher-order semi-Lagrangian discontinuous Galerkin schemes.

In this fully discrete setting, we now need to translate the operators (𝑒
Δ𝑡
2 𝐴 in Steps 1 and 4 and 𝑒Δ𝑡𝐵(𝐸𝑛+1∕2) in Step 3) to the 

corresponding matrices, which we discuss below.

Computation of 𝑒
Δ𝑡
2 𝐴 = 𝑒−

Δ𝑡
2 𝑣𝜕𝑥 . Noting that a direct application of this operator on a function leads to

𝑒
Δ𝑡
2 𝐴𝑓𝑛(𝑥, 𝑣) = 𝑓𝑛(𝑥− 𝑣Δ𝑡∕2, 𝑣) =

∑
𝑖𝑗

𝖿𝑛𝑖𝑗 𝜒𝐶𝑖𝑗 (𝑥− 𝑣Δ𝑡∕2, 𝑣).

Since 𝑣Δ𝑡∕2, in general, is not a multiple of Δ𝑥, the resulting function does not lie in our approximation space. Therefore we 
6

have to perform a projection (see Fig. 1 for an illustration). That is, we look for an approximation 𝖿𝑛,⋆
𝑖𝑗

such that
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Fig. 1. Illustration of the semi-Lagrangian discontinuous Galerkin scheme (note that for the first scheme described here we have a constant, i.e., a polynomial of 
degree 0, in each cell).

∑
𝑖𝑗

𝖿𝑛,⋆
𝑖𝑗
𝜒𝐶𝑖𝑗 (𝑥, 𝑣) ≈

∑
𝑖𝑗

𝖿𝑛𝑖𝑗 𝜒𝐶𝑖𝑗 (𝑥− 𝑣Δ𝑡∕2, 𝑣) .

We choose linear interpolation using the two nearby cells. Decompose −𝑣Δ𝑡∕(2Δ𝑥) into its integer component and the remainder by 
setting

−𝑣Δ𝑡
2Δ𝑥

= n(𝑣) + 𝛼(𝑣) ∶= ⌊−𝑣Δ𝑡∕(2Δ𝑥)⌋+ (−𝑣Δ𝑡∕(2Δ𝑥) − ⌊−𝑣Δ𝑡∕(2Δ𝑥)⌋) , (3.6)

where n is the closest lower bound integer, and 𝛼 ∈ [0, 1). Then the linear interpolation is:

𝖿𝑛,⋆
𝑖𝑗

= (1 − 𝛼(𝑣𝑗 ))𝖿𝑛𝑖+n(𝑣𝑗 ), 𝑗 + 𝛼(𝑣𝑗 )𝖿
𝑛
𝑖+n(𝑣𝑗 )+1, 𝑗

.

Due to the definition of n(𝑣), we have a nice property:

𝑣Δ𝑡
2Δ𝑥

= −n(𝑣) − 𝛼(𝑣) = −n(𝑣) − 1
⏟⏞⏞⏟⏞⏞⏟

n(−𝑣)

+ 1 − 𝛼(𝑣)
⏟⏟⏟
𝛼(−𝑣)

⇒ n(−𝑣) = −n(𝑣) − 1 , 𝛼(−𝑣) = 1 − 𝛼(𝑣) . (3.7)

Remark 3.2. It is instructive to consider some special cases:

• For n(𝑣) = −1, we have a translation from left to right with CFL < 1, 𝛼 = 1 − 𝑣 and our scheme simply becomes an upwind 
scheme. Here, CFL denotes the constant in the Courant–Friedrichs–Lewy condition [19].

• For n(𝑣) = 0 we have a translation from right to left with CFL < 1, 𝛼 = |𝑣| and again we obtain the upwind scheme.

With this formulation, it is straightforward to translate the update formula into a matrix form:

𝖿𝑛,⋆∶, 𝑗 = 𝖠𝑣𝑗 𝖿𝑛∶, 𝑗 , with 𝖠𝑣
𝑘𝑙
=
⎧⎪⎨⎪⎩
1 − 𝛼(𝑣) , 𝑙 = 𝑘+ n(𝑣) ,
𝛼(𝑣) , 𝑙 = 𝑘+ n(𝑣) + 1 ,
0 , otherwise .

(3.8)

Here, 𝖠𝑣 ∈ℝ𝑛𝑥×𝑛𝑥 is a sparse matrix with only two diagonals being non-zero.

It is worth noting that (𝖠𝑣)⊤ = 𝖠−𝑣, namely, the transpose is precisely the matrix we would get if we replace 𝑣 by −𝑣. To see this, 
we recall (3.7) that produces 𝖠−𝑣

𝑘𝑙
= 𝖠𝑣

𝑙𝑘
. This nice property reflects the fact that the operator is anti-self-adjoint, and the computation 

suggests the semi-Lagrangian formulation preserves such property on the discrete level.

Computation of 𝐸𝑛+1∕2(𝑥). In this fully discrete setting, we follow (3.4) to write, within 𝑛-th step,

𝖤𝑛,⋆ ≈𝐸𝑛+1∕2 with 𝖤𝑛,⋆ = [𝖤𝑛,⋆
𝑖

] = 𝖤(𝖿𝑛,⋆) , (3.9)

where 𝖤 ∶ℝ𝑛𝑥×𝑛𝑣 →ℝ𝑛𝑥 with:

𝖤(𝖿 ) = 𝖢
(
1 − 𝜌𝖿

)
, where 𝖢𝑖𝑗 = 𝜕𝑥𝐺(𝑥𝑖 − 𝑥𝑗 ) and

(
𝜌𝖿
)
𝑖
= 1
𝑛𝑣

∑
𝑗

𝖿𝑖𝑗 , (3.10)

where 𝐺 is the Green’s function for the Poisson equation. In practice, we do not form 𝐺 explicitly, but only compute its action to a 
7

vector on the fly via the Fast Fourier Transform. More precisely, we have
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𝖤(𝖿 ) = −1
[
diag

(
0, 𝗂

1
,⋯ ,

𝗂
𝑛𝑥 − 1

)
 (1 − 𝜌𝑓 )

]
,

where 𝗂 is the imaginary unit,  and −1 represent the Discrete and Inverse Discrete Fourier transforms, respectively.

Computation of 𝑒Δ𝑡𝐵(𝐸
𝑛+1∕2). The computation of transporting in the velocity domain is exactly the same as before, except the 

velocity term 𝑣 is now replaced by the acceleration term 𝖤𝑛,⋆, and the action of the operator is taken on the velocity space. Namely, 
we work on the vector of

𝖿𝑛,⋆⋆
𝑖,∶ = 𝖿𝑛,⋆

𝑖,∶ 𝖡𝖤𝑛,⋆
𝑖

+𝖧𝑖 , with 𝖡𝑎
𝑙𝑘
=
⎧⎪⎨⎪⎩
1 − 𝛼(2𝑎) , 𝑙 = 𝑘+ n(2𝑎) ,
𝛼(2𝑎) , 𝑙 = 𝑘+ n(2𝑎) + 1 ,
0 , otherwise ,

(3.11)

where 𝖡 ∈ℝ𝑛𝑣×𝑛𝑣 , and 𝖧 is a vector of length 𝑛𝑥 with 𝖧𝑖 =𝐻(𝑥𝑖). Notice that 𝛼 and n contain an extra factor of 2 here because this 
step is run on a time interval of Δ𝑡 instead of Δ𝑡∕2, as described in (3.6).

To summarize the calculations above, we describe the fully discrete update formula in Algorithm 2.

Algorithm 2 Semi-Lagrangian scheme for solving (2.2b) for a given 𝖧.

Parameter: 𝖧
Input: initial condition 𝖿0 , discretization set (𝑥𝑖, 𝑣𝑗 ) for (𝑖, 𝑗) ∈ [1, 𝑛𝑥] × [1, 𝑛𝑣], Δ𝑡, and 𝑁 so that 𝑇 =𝑁Δ𝑡, the semi-Lagrangian matrices 𝖠𝑣𝑗 for all 𝑗, and 𝖧
Output: 𝖿𝑁

for 𝑛 <𝑁 do

Compute 𝖿𝑛,⋆ according to (3.8);

Compute 𝖤𝑛,⋆ using (3.9);

Compute 𝖿𝑛,⋆⋆ according to (3.11) with the updated 𝖡𝖤𝑛,⋆
𝑖

+𝖧𝑖 ;

Compute 𝖿𝑛+1 according to (3.8).

end for

Reformulation of the optimization The optimization problem (2.2) was originally presented as a PDE-constrained problem on 
the continuous level. However, when we discretize the Vlasov–Poisson equation, the problem becomes an algebraic one and the 
constraints are also transformed into algebraic forms. Therefore, we need to translate the optimization problem into a discrete form 
that matches the new algebraic constraints as follows:

min𝖧 𝖩(𝖿 [𝖧]) = 1
2
∑
𝑖𝑗

|𝖿𝑁𝑖𝑗 − 𝖿 eq
𝑖𝑗
|2Δ𝑥Δ𝑣 (3.12a)

s.t. 𝖿𝑁 solves Algorithm 2 for a given 𝖧 . (3.12b)

Note that though the definition of 𝖩 only calls for 𝖿𝑁 at the final time, its computation goes through iterations from 𝑛 = 1 to 𝑛 =𝑁 , 
so we concatenate everything into one 𝖿 = [𝖿0 , ⋯ , 𝖿𝑁 ] to keep a record of all relevant computations.

3.2. Adjoint state solver for the discrete system

On the discrete setting, the adjoint equation needs to be designed accordingly. We describe the process of computing the adjoint 
equation for computing (3.12). To start, we expand out Algorithm 2 to obtain the following Lagrangian:

𝖫(𝖧, 𝖿 , 𝖿⋆, 𝖿⋆⋆,𝗀,𝗀⋆,𝗀⋆⋆) = 𝖩(𝖿 ) + Term I + Term II + Term III (3.13)

with

Term I

Δ𝑥Δ𝑣 =
𝑁−1∑
𝑛=0

∑
𝑖𝑗

[
−𝖿𝑛,⋆
𝑖𝑗

+
(
(1 − 𝛼(𝑣𝑗 ))𝖿𝑛𝑖+n(𝑣𝑗 ),𝑗 + 𝛼(𝑣𝑗 )𝖿

𝑛
𝑖+n(𝑣𝑗 )+1,𝑗

)]
𝗀𝑛,⋆
𝑖𝑗
, (3.14a)

Term II

Δ𝑥Δ𝑣 =
𝑁−1∑
𝑛=0

∑
𝑖𝑗

[
−𝖿𝑛,⋆⋆
𝑖𝑗

+
(
(1 − 𝛼(2𝖤𝑛,⋆

𝑖
+ 2𝖧𝑖))𝖿

𝑛,⋆

𝑖,𝑗+n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)
+

𝛼(2𝖤𝑛,⋆
𝑖

+ 2𝖧𝑖)𝖿
𝑛,⋆

𝑖,𝑗+n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)+1

)]
𝗀𝑛,⋆⋆
𝑖𝑗

, (3.14b)

Term III

Δ𝑥Δ𝑣 =
𝑁−1∑
𝑛=0

∑
𝑖𝑗

[
−𝖿𝑛+1
𝑖𝑗

+
(
(1 − 𝛼(𝑣𝑗 ))𝖿

𝑛,⋆⋆

𝑖+n(𝑣𝑗 ),𝑗
+ 𝛼(𝑣𝑗 )𝖿

𝑛,⋆⋆

𝑖+n(𝑣𝑗 )+1,𝑗

)]
𝗀𝑛+1
𝑖𝑗

, (3.14c)

where as usual, we concatenate all terms, for example: 𝖿∗ = [𝖿0,∗ , ⋯ , 𝖿𝑁,∗], and 𝗀𝑛,⋆, 𝗀𝑛,⋆⋆, and 𝗀𝑛 are the Lagrange multipliers, also 
known as the adjoint states.

Similar to the continuous setting, suppose we run Algorithm 2 to obtain 𝖿 , then 𝖿 is naturally a function of 𝖧. On this solution 
manifold, according to the definition (3.13), Term I, Term II and Term III are all satisfied and thus can be removed, implying 
8

𝖫(𝖧, 𝖿 [𝖧] ⋯) = 𝖩(𝖿 [𝖧]), and thus, according to the chain rule, we have
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∇𝖧𝖩 =∇𝖧𝖫+∇𝖧𝖿 ⋅∇𝖿 𝖫 .

As a result, if we can find the values for 𝗀 so that ∇𝖿 𝖫 = 0, the constrained derivative in (3.12) is simply ∇𝖧𝖫. Noticing that the 𝖧
information comes in only through Term II, we immediately have:

1
Δ𝑥Δ𝑣

𝜕𝖧𝑖𝖩 =
1

Δ𝑥Δ𝑣
𝜕𝖫
𝜕𝖧𝑖

=
𝑁−1∑
𝑛=0

Δ𝑡
Δ𝑣

∑
𝑗

[
𝖿𝑛,⋆
𝑖,𝑗+n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)+1

− 𝖿𝑛,⋆
𝑖,𝑗+n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)

]
𝗀𝑛,⋆⋆
𝑖𝑗

, (3.15)

where we used 𝛼′ = Δ𝑡
2Δ𝑣 . This formula holds on account of 𝗀 that ensures ∇𝖿 𝖫 = 0. To do so, we set up the final time solution and 

propagate it backwards in time for all values of 𝗀. We describe the process below.

Remark 3.3. It is worth noting that since we are utilizing first order semi-Lagrangian DG method, the 𝖧 dependence is linear and 
the derivative is rather straightforward. When higher-order DG methods are employed, derivatives take on more complicated forms.

3.2.1. Setting the final data

Similar to the continuous setting, to specify the final condition we set ∇𝖿 𝖫 = 0 and get

0 = 𝜕𝖫

𝜕𝖿𝑁
𝑖𝑗

=Δ𝑥Δ𝑣(𝖿𝑁𝑖𝑗 − 𝖿 eq
𝑖𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝖩∕𝜕𝖿𝑁
𝑖𝑗

− Δ𝑥Δ𝑣𝗀𝑁𝑖𝑗
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Term III contribution

, (3.16)

from which we derive the final condition for the adjoint state 𝗀𝑁

𝗀𝑁𝑖𝑗 = 𝖿𝑁𝑖𝑗 − 𝖿 eq
𝑖𝑗
, or equivalently 𝗀𝑁 = 𝖿𝑁 − 𝖿 eq . (3.17)

We remark that (3.17) is the discretized version of (2.7) for the objective function (2.1).

3.2.2. To compute 𝗀𝑛,⋆⋆ from 𝗀𝑛+1
This involves backward propagation for half a time step and can be achieved mathematically by taking derivatives with respect 

to 𝖿𝑛,⋆⋆ and setting the derivative to zero. We first note that, for Term III, the right-hand side of (3.14c) can be written as:∑
𝑖𝑗

[
(1 − 𝛼(𝑣𝑗 ))𝖿

𝑛,⋆⋆

𝑖+n(𝑣𝑗 ),𝑗
+ 𝛼(𝑣𝑗 )𝖿

𝑛,⋆⋆

𝑖+n(𝑣𝑗 )+1,𝑗

]
𝗀𝑛+1
𝑖𝑗

=
∑
𝑖𝑗

𝖿𝑛,⋆⋆
𝑖𝑗

[
(1 − 𝛼(𝑣𝑗 ))𝗀𝑛+1𝑖−n(𝑣𝑗 ),𝑗

+ 𝛼(𝑣𝑗 )𝗀𝑛+1𝑖−n(𝑣𝑗 )−1,𝑗

]
. (3.18)

Then, we differentiate (3.13) with respect to 𝖿𝑛,⋆⋆
𝑖𝑗

for all 𝑖, 𝑗, 𝑛 and set the derivative to be zero:

0 = 1
Δ𝑥Δ𝑣

𝜕𝐿

𝜕𝖿𝑛,⋆⋆
𝑖𝑗

=
[
(1 − 𝛼(𝑣𝑗 ))𝗀𝑛+1𝑖−n(𝑣𝑗 ),𝑗

+ 𝛼(𝑣𝑗 )𝗀𝑛+1𝑖−n(𝑣𝑗 )−1,𝑗

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term III contribution

−𝗀𝑛,⋆⋆
𝑖𝑗

⏟⏟⏟
Term II

.

Therefore, we obtain the formula

𝗀𝑛,⋆⋆
𝑖𝑗

= (1 − 𝛼(𝑣𝑗 ))𝗀𝑛+1𝑖−n(𝑣𝑗 ),𝑗
+ 𝛼(𝑣𝑗 )𝗀𝑛+1𝑖−n(𝑣𝑗 )−1,𝑗

. (3.19)

3.2.3. To compute 𝗀𝑛,⋆ from 𝗀𝑛,⋆⋆
We essentially need to take the variation of 𝖫 with respect to 𝖿𝑛,⋆

𝑖𝑗
and set it to zero. The contribution from Term I is rather 

straightforward. To deal with Term II, we note the identity for the right-hand side of (3.14b):∑
𝑖𝑗

[
(1 − 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖))) 𝖿

𝑛,⋆

𝑖,𝑗+n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)
+ 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖)) 𝖿

𝑛,⋆

𝑖,𝑗+n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)+1

]
𝗀𝑛,⋆⋆
𝑖𝑗

=
∑
𝑖𝑗

𝖿𝑛,⋆
𝑖𝑗

[
(1 − 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖)))𝗀

𝑛,⋆⋆

𝑖,𝑗−n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)
+ 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖))𝗀

𝑛,⋆⋆

𝑖,𝑗−n(𝖤𝑛,⋆
𝑖

+𝖧𝑖)−1

]
. (3.20)

It is important to note that 𝖤𝑛,⋆ is also dependent on 𝖿𝑛,⋆, and therefore, taking the variation of the above formula with respect 
to 𝖿𝑛,∗ involves two product rules. The first one composes 𝛼′ and ∇𝑓𝐸, while the second one composes n′ and ∇𝑓𝐸. Since

𝛼′ = Δ𝑡
2Δ𝑣

, n′ = 0 , (3.21)

it amounts to finding ∇𝑓𝐸. Recall (3.9)-(3.10) in which 𝖤 depends on 𝖿 linearly. Therefore, we have

𝖤(𝖿𝑛,⋆ + 𝜖𝜓) − 𝖤(𝖿𝑛,⋆)
9

𝖤(𝖿𝑛,⋆ + 𝜖𝜓) − 𝖤(𝖿𝑛,⋆) = 𝜖𝖤(𝜓) ⇒ ⟨∇𝖿 𝖤 , 𝜓⟩ = lim
𝜖→0 𝜖

= 𝖤(𝜓) . (3.22)
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Combining it to the full formula of (3.13), we have the directional derivative with respect to 𝜓 as:

1
Δ𝑥Δ𝑣

⟨∇𝖿 𝖫|𝖿𝑛,⋆ ,𝜓⟩ = 1
Δ𝑥Δ𝑣

∑
𝑖𝑗

𝜕𝖫

𝜕𝖿𝑛,⋆
𝑖𝑗

𝜓𝑖𝑗

= −⟨𝗀𝑛,⋆ ,𝜓⟩
⏟⏞⏞⏞⏟⏞⏞⏞⏟

term I

+
∑
𝑖𝑗

𝜓𝑖𝑗

((
1 − 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖))

)
𝗀𝑛,⋆⋆
𝑖, 𝑗−n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)

+ 𝛼(2(𝖤𝑛,⋆
𝑖

+𝖧𝑖))𝗀
𝑛,⋆⋆

𝑖, 𝑗−n(2𝖤𝑛,⋆
𝑖

+2𝖧𝑖)−1

)
(3.23)

+
∑
𝑖𝑗

𝖿𝑛,⋆
𝑖𝑗

Δ𝑡
Δ𝑣

[
−𝖤(𝜓)𝑖 𝗀

𝑛,⋆⋆

𝑖, 𝑗−n(2𝖤𝑛,⋆
𝑖

+2𝖧𝑖)
+ 𝖤(𝜓)𝑖 𝗀

𝑛,⋆⋆

𝑖, 𝑗−n(2𝖤𝑛,⋆
𝑖

+2𝖧𝑖)−1

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term II, contribution from 𝛼

,

where we used (3.21).

Recalling the definition of 𝖤(𝖿 ) in (3.10), it is straightforward to see that∑
𝑖𝑗

𝖤(𝜓)𝑖𝜙𝑖𝑗 = −
∑
𝑖𝑗

𝜓𝑖𝑗𝖤(𝜙)𝑖 .

Then the last term of (3.23) becomes

Δ𝑡
Δ𝑣

∑
𝑖𝑗

𝖤(𝜙)𝑖𝜓𝑖𝑗 , for 𝜙 = [𝜙𝑖𝑗 ] with 𝜙𝑖𝑗 = 𝖿𝑛,⋆
𝑖𝑗

(
𝗀𝑛,⋆⋆
𝑖, 𝑗−n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)

− 𝗀𝑛,⋆⋆
𝑖, 𝑗−n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)−1

)
. (3.24)

By setting (3.23) to zero, and noting that this holds for any 𝜓 , we obtain the updating formula from 𝗀𝑛,⋆⋆ to 𝗀𝑛,⋆:

𝗀𝑛,⋆
𝑖𝑗

=
(
1 − 𝛼(2(𝖤𝑛,⋆

𝑖
+𝖧𝑖))

)
𝗀𝑛,⋆⋆
𝑖, 𝑗−n(2𝖤𝑛,⋆

𝑖
+2𝖧𝑖)

+ 𝛼(2(𝖤𝑛,⋆
𝑖

+𝖧𝑖))𝗀
𝑛,⋆⋆

𝑖, 𝑗−n(2𝖤𝑛,⋆
𝑖

+2𝖧𝑖)−1
+ Δ𝑡

Δ𝑣
𝖤(𝜙)𝑖 , (3.25)

where 𝜙 is defined in (3.24) for every time step 𝑛.

3.2.4. To compute 𝗀𝑛−1 from 𝗀𝑛,⋆
This is achieved by differentiating (3.13) with respect to 𝖿𝑛 and set the derivative to be zero. Noticing in (3.14), only Term I and 

Term II depend on 𝖿𝑛. Setting 𝜕𝖿𝑛
𝑖𝑗
𝖫 = 0 gives:

𝗀𝑛𝑖𝑗 = (1 − 𝛼(𝑣𝑗 ))𝗀
𝑛,⋆

𝑖−n(𝑣𝑗 ),𝑗
+ 𝛼(𝑣𝑗 )𝗀

𝑛,⋆

𝑖−n(𝑣𝑗 )−1,𝑗
. (3.26)

In the derivation, we called on the identity (3.18) once again.

The collection of (3.17), (3.19), (3.25) and (3.26) together gives the update procedure to compute 𝗀𝑛, 𝗀𝑛,⋆ and 𝗀𝑛,⋆⋆. These 
updates are then combined with (3.15) to calculate the gradient for running the gradient descent algorithm, as summarized in 
Algorithm 3.

Algorithm 3 GD for simulating (3.12).

Given 𝖿0 , 𝖿 eq , number of iterations 𝑖𝑡, and the initial guess 𝖧0

for 𝑘 = 0, 1, … , 𝑖𝑡 − 1 do

Compute 𝖿 [𝖧𝑘] by running Algorithm 2;

Compute 𝗀[𝖧𝑘]: set 𝗀𝑁 according (3.17);

for 𝑛 =𝑁 − 1, 𝑁 − 2, ⋯ , 1 do

Update 𝗀𝑛,⋆⋆ from 𝗀𝑛+1 using (3.19);

Update 𝗀𝑛,⋆ from 𝗀𝑛,⋆⋆ using (3.25);

Update 𝗀𝑛 from 𝗀𝑛,⋆ using (3.26);

end for

Assemble ∇𝖧𝖩||𝖧𝑘 using (3.15);

𝐻𝑘+1 =𝐻𝑘 − ℎ ∇𝖧𝖩||𝖧𝑘 , where ℎ is determined by line search;

Evaluate 𝖩(𝖿 [𝖧𝑘+1]) using (3.12a).

end for

Remark 3.4. It is easy to see the direct one-to-one correspondence between continuous and discrete settings by comparing Algo-

rithm 1 and Algorithm 3. In particular,

• Evaluation of 𝐽 and 𝖩: Equation (3.12a) is the Riemann sum approximation to (2.2a);

• Fréchet derivative 𝛿𝐽
𝛿𝐻

and gradient ∇𝖧𝖩: Equation (3.15) is also a Riemann sum approximation to (2.8) in (𝑣, 𝑡)-integral and 
10

finite differencing in 𝑣.
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Fig. 2. The distribution function 𝑓 (𝑡, 𝑥, 𝑣) is shown at time 𝑡 = 0, 𝑡 = 1.5, and 𝑡 = 20 with the external electric field set to be 𝐻 = 0 (i.e., no control imposed). As 
expected, the beams spread out quickly forming filaments. For this simulation, 128 grid points in both the space and velocity direction and a time step size of Δ𝑡 = 0.5
has been used. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• Equations (3.19), (3.25) and (3.26) form the whole semi-Lagrangian scheme for the backward propagation equation shown 
in (2.6). In particular,

– Recalling (3.7), Equation (3.19) is equivalent to:

𝗀𝑛,⋆⋆
𝑖𝑗

= (1 − 𝛼(−𝑣𝑗 ))𝗀𝑛+1𝑖+n(−𝑣𝑗 ),𝑗
+ 𝛼(−𝑣𝑗 )𝗀𝑛+1𝑖+n(−𝑣𝑗 )+1,𝑗

,

which is exactly the semi-Lagrangian scheme backward in time for 𝜕𝑡𝑔 + 𝑣𝜕𝑥𝑔 = 0 for Δ𝑡∕2 stepsize with flipped velocity −𝑣𝑗 , 

resonating 𝑔𝑛,⋆⋆ = 𝑒−
Δ𝑡𝐴
2 𝑔 defined in (3.3).

– Similarly, Equation (3.26) also represents the semi-Lagrangian scheme backward in time for Δ𝑡∕2 for 𝜕𝑡𝑔 + 𝑣𝜕𝑥𝑔 = 0 with 
velocity −𝑣𝑗 .

– Equation (3.25) is the semi-Lagrangian numerical scheme for

𝜕𝑡𝑔 −𝐻𝜕𝑣𝑔 + [𝐺′ ∗ (𝜌𝑓 − 1)]𝜕𝑣𝑔 +𝐺′ ∗ ⟨𝑔𝜕𝑣𝑓⟩ = 0 ,

the acceleration part of (2.6), where 𝖤𝑛,⋆ +𝖧 serves as the approximation to 𝐺′ ∗ (1 − 𝜌𝑓 ) +𝐻 at all grid points, and 𝖤(𝜙)∕Δ𝑣
numerically presents 𝐺′ ∗ ⟨𝑔𝜕𝑣𝑓⟩ with 𝜙∕Δ𝑣 ≈ −𝑓𝜕𝑣𝑔, recalling 𝖤 is a linear operator. To fully see the equivalence, we need 
to use the fact that ⟨𝑔, 𝜕𝑣𝑓⟩𝑣 = −⟨𝜕𝑣𝑔, 𝑓⟩𝑣.

4. Example 1: maintaining focusing beams

This section is dedicated to the first scenario of our study, which is to design an external field 𝐻 to maintain the focusing feature 
of the plasma beam, i.e., the solution to the Vlasov–Poisson system (1.1).

To be specific, we start with the following initial value

𝑓 (0, 𝑥, 𝑣) = 𝜒(𝑥)
exp(−𝑣2∕2)

2𝜋
, 𝜒(𝑥) = exp(−𝑎(𝑥− 𝑏)2) sin( 𝑥2 )

2

with (𝑥, 𝑣) on the domain [0, 4𝜋] ×[−6, 6] and 𝑎 = 0.2, 𝑏 = 2𝜋. This initial value corresponds to two spatially concentrated beams with 
the velocity distributed according to the Maxwellian. Without an external electric field (setting 𝐻 = 0), this localization in space is 
lost almost immediately. Particles with higher velocity travel faster, and by deploying the periodic boundary condition, they loop 
back to the domain, forming a filament-type dynamical pattern (see Fig. 2). Our goal is now to apply an external electric field in 
such a way as to keep the distribution function as close as possible to the initial value and thus maintain its focusing beam feature. 
More specifically, we set the final time to be 𝑡 = 20 and look for 𝐻 that minimizes the following objective functional:

𝐽 (𝑓 ) = 1
2
‖𝑓 (20, ⋅, ⋅) − 𝑓 (0, ⋅, ⋅)‖22 .

This 1 + 1 dimensional problem considered here is a simplification to the multi-dimensional beam focusing/beam shaping problem 
at large, whose overarching goal is to apply external electric fields in such a way that the plasma stays confined (i.e., localized) and 
as close as possible to a prescribed shape in two dimensions as it propagates along the third. In such problems, the time 𝑡 is a pseudo 
time that points into the direction where the beam is propagating along; see [22,33,37] for more details.

To discretize the problem, we use 128 grid points in both the space and velocity direction, and the time step size is set to be 
Δ𝑡 = 0.5.

We set the admissible set for the external field in the form of Fourier expansion. This is to parameterize 𝐻 as:∑ (
1

)

11

𝐻(𝑥) =
𝑘∈𝐾

𝑎𝑘 sin 2𝑘𝑥 ,
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Fig. 3. The top left plot shows the parameter scan for 𝑘 = 1, 𝑘 = 2, and 𝑘 = 3. The convergence of the optimization algorithm for two runs using 𝑘 = 1 and 𝑘 = 3
respectively is shown on the top middle and the corresponding distribution function at time 𝑡 = 20 is shown at the bottom.

where 𝐾 ⊂ ℕ is a subset that might be confined for instance by experimental constraints. The optimization then is translated from 
finding 𝐻 as a function to finding its Fourier coefficients {𝑎𝑘}. Since the target is even (with respect to the physical space 𝑥), it is 
reasonable to assume that the external electric field (and thus the force) is an odd function. Hence, only sinusoidal functions are 
included.

Our first goal is to study the optimization landscape of the objective function 𝐽 with respect to coefficients {𝑎𝑘} in the simplest 
setting. We first consider a single mode situation and thus only change the values for the coefficient 𝑎1 or 𝑎2 or 𝑎3, respectively. For 
each value of 𝑎𝑖, we solve the Vlasov–Poisson system and compute the value of the objective functional 𝐽 . The numerical results 
are presented in Fig. 3. It is immediately clear that even in this simple configuration (only a single Fourier mode), the landscape 
of 𝐽 exhibits several local minima. Further, we observe that the proposed optimization algorithm converges very quickly to the 
corresponding (local) minima. The optimized solution stays localized in the physical space. However, the shape of the bump is 
significantly deformed and no longer preserves the original smooth bell shape. This indicates that using only a single Fourier mode 
to parameterize the external electric field is insufficient.

To potentially improve the objective function, we repeat the parameter scan procedure with a larger set for 𝐾 : 𝐾 = {1, 2} or 
𝐾 = {2, 3}, i.e., 𝐻 is described using two parameters. The results are shown in Fig. 4. The first two subplots are for the parameter 
scan, and they show the landscape of the objective function. We draw similar conclusions to the previous case, i.e., there are many 
local minima scattered on the parameter space, and the gradient-based methods should only be able to find local minima. Locally in 
time, fast convergence of the gradient-based method is observed. Due to the larger parameter space, the obtained objective function 
indeed has lower values, and the produced solution matches the target much better (see the bottom three plots in Fig. 4; note that a 
zoomed-in part of the distribution function is shown to make the comparison with the target easier).

Let us also duly note that performing the parameter scan (i.e., generating the pictures on the top of Fig. 4) gives us a basic 
understanding of the problem and the potential landscape of the objective function. The results are presented here only for illustrative 
purposes. When the number of parameters is large, the scanning becomes impractical since it requires significant computational 
resources. In situations like this, employing an efficient optimization algorithm is necessary. We now present the case where 𝐾 =
{1, … , 10}, and the optimization problem is posed on a ten-dimensional space. In Fig. 5, we apply the gradient descent algorithm 
(Algorithm 3) starting from three different configurations of the parameters. In all three cases, our algorithm converges to a solution 
in merely a few iterations where the objective function plateaus at a value around 0.005 and the produced local optimal external 
electric field 𝐻 roughly preserves the concentrated beam structure. The bottom row of Fig. 5 also presents the mechanism of the 
beam-shaping: Within the area of each bump, the force directs the plasma towards the center of the bump – positive force for the 
particles sitting in the left region of the bump, and negative force for the particles sitting in the right region of the bump. This is to 
counter the natural tendency of the plasma to lose confinement and become less localized in physical space.

In this non-convex optimization, the obtained minimizers are typically local minima, and the quality of the beam-shaping sig-

nificantly depends on the chosen initial guess. A global optimization strategy is then desirable. We propose deploying the gradient 
computation in Algorithm 3 to accelerate and improve the off-the-shelf global optimization strategy.

To illustrate this, we employ the genetic algorithm named differential evolution [65] for optimization that is already imple-

mented in the Python package SciPy. The brute-force implementation leads to slow convergence (see the results in Fig. 6). When 
12

the gradient computation is integrated into the polishing process, the computational cost is dramatically reduced; see also Fig. 6 for 
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Fig. 4. A parameter scan for 𝐾 = {1, 2} and 𝐾 = {2, 3} is shown on the top. The convergence of the optimization algorithm for two different initial values is shown 
on the top right and the corresponding distribution function at time 𝑡 = 20 is shown at the bottom. Note that we have restricted both the 𝑥 and 𝑣 axis in the plots of 
the distribution function in order to make the comparison easier.

Fig. 5. We show the convergence of the optimization algorithm for three different runs with different initial guesses. The initial guesses for the three runs are listed 
in Table 1. Note that we have restricted both the 𝑥 and 𝑣 axes in the plots of the distribution function in order to make the comparison easier.

the computational cost comparison. In particular, the genetic algorithm generates a large number of candidate solutions, and these 
candidates are “genetically mutated” (hence the name of the algorithm) in search of better solutions. The integration of the gradient 
computation is to apply the gradient descent to the best candidate solution (i.e., the solution with the smallest 𝐽 ) as well as 𝑛𝑝 − 1
other randomly chosen candidates. The total 𝑛𝑝 candidate solutions are updated through the gradient descent for 𝑖𝑡 steps within 
each outer iteration. In Fig. 6, we also compared the performance of the algorithm using different choices of 𝑛𝑝 and 𝑖𝑡: polishing 
only a few candidates with a small number for 𝑖𝑡 seems to generate rather fast convergence. In particular, to reduce the objective 
functional 𝐽 to approximately 1.2 ⋅ 10−3, setting 𝑛𝑝 = 1 and 𝑖𝑡 = 3 calls for 700 forward and adjoint solvers, while the brute-force 
13

genetic algorithm incurs 5 times more of the cost.
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Table 1

Initial guesses for Algorithm 3 for problem shown in Fig. 5.

init. config. A B C

𝑎1 −0.69531099 0.94504888 −0.69531099
𝑎2 −1.7011901 1.14103725 −1.7011901
𝑎3 −3.70236071 −1.55007537 −3.1878159
𝑎4 −1.049485 0.8429296 0.97433649
𝑎5 −0.45695289 −0.08029718 1.82681106
𝑎6 1.87686503 2.40461788 1.68046644
𝑎7 1.91960996 0.9644806 2.31895602
𝑎8 1.69153168 2.25242665 1.69153168
𝑎9 0.42096132 −0.12171427 1.33032262
𝑎10 −0.40649424 −0.60917031 −0.89049334

Fig. 6. The plot presents the convergence performance of the genetic optimization algorithm with gradient based polishing for different values of 𝑛𝑝 (the number 
of candidate solutions in each generation that are polished) and 𝑖𝑡 (the number of gradient-descent sub-iterations during the polishing). We use 50 candidate 
solutions in the genetic algorithm. For the computational cost we made a crude assumption that each forward and backward problem solve has a unit cost, and 
thus the computational cost per iteration is 50 + 2 ⋅ 𝑛𝑝 ⋅ 𝑖𝑡. Including gradient-based optimization as part of a global optimization algorithm significantly reduces the 
computational cost. On the bottom of the plot, the distribution function for the best solutions, found with and without the gradient-based polishing algorithm, are 
shown. The optimization results are similar while gradient-polishing achieves the convergence with much less cost. Note that we have restricted both the 𝑥 and 𝑣
axes in the plots of the distribution function in order to make the comparison easier.

It is worth noting that in the simulations conducted here, we have kept the 𝑛𝑝 and 𝑖𝑡 constant for the entire run, but a more 
delicate choice of parameter is needed to further improve the computation. Like many other genetic programming algorithms, it is 
crucial to balance “global exploration” and “local exploitation” to find the global minimum. We expect physical heuristics can be 
very useful in parameter tuning for this global optimization search, but we do not further explore this direction.

Another interesting aspect of the problem considered in this section is that even though we perform the optimization over a 
finite time interval. That is, we constrain the solution only at time 𝑡 = 20. The obtained result extrapolates well for beam-shaping in 
the larger time horizon. This is presented in Fig. 7 where we employ the parameter configuration that achieves 𝐽 = 7.2 ⋅ 10−4 from 
Fig. 6 and runs the simulation up to 𝑡 = 80. It can be seen that the plasma is gradually leaking out from the confined region, but the 
concentration around the original two physical domains is still clear.

5. Example 2: suppressing a two-stream instability

The two-stream instability is a classic problem in plasma physics and a toy model that presents some shared features of many 
other plasma instabilities. Two beams propagating in opposite directions form an unstable equilibrium: A perturbation to the equi-

librium leads to an exponential growth of the electric field and an entangled beam structure in phase space. Many other unstable 
equilibria show similar instabilities. For example, the so-called bump-on-tail instability, which models the propagation of a beam 
14

into a stationary plasma, can be used to heat the plasma in the context of a fusion reactor. For more details, we refer to [13].
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Fig. 7. The parameter found in the genetic algorithm with gradient-polishing that achieves 𝐽 = 7.2 ⋅ 10−4 at 𝑡 = 20 is applied as the external field to the VP system, 
which is then ran to 𝑡 = 40 and 𝑡 = 80. The plasma particles start to leak and show blurring compared to the target distribution, but the beam shape is relatively 
preserved well. Note that we have restricted both the 𝑥 and 𝑣 axes in the plots of the distribution function in order to make the comparison easier.

Fig. 8. Time evolution of the two-stream instability when the external field is set to be 𝐻 = 0: A small perturbation at 𝑡 = 0 leads to an exponential increase of the 
electric energy until nonlinear effects cap it off with a saturation. The amplitude of 𝐸 is marked on the right side of the plot in the middle panel.

Here, we will consider the 1+1 dimensional two-stream instability given by the following initial value

𝑓 (0, 𝑥, 𝑣) = (1 + 𝛼 cos(𝛽𝑥))𝑓 eq(𝑣) , (𝑥, 𝑣) ∈ [0,2𝜋∕𝛽] × [−6,6]

with

𝑓 eq(𝑣) = 1
2
√
2𝜋

(
exp

(
−(𝑣− 𝑣)2

2

)
+ exp

(
−(𝑣+ 𝑣)2

2

))
.

The parameters are chosen as 𝛼 = 10−3, 𝛽 = 0.2, and 𝑣 = 2.4. We use 128 grid points in both the space and velocity direction to 
discretize the problem. The time step size is chosen as Δ𝑡 = 0.1. The need for a smaller time step size makes this problem more 
computationally demanding than the focus problem considered in the previous section.

If no external electric field is applied (i.e., 𝐻 = 0), we observe an exponential increase in the electric energy. This behavior 
continues until the electric field is large enough such that strongly nonlinear effects take over. This leads to saturation of the electric 
field and a filamented vortex in phase space (see Fig. 8).

Since plasma instabilities are often undesired and can lead to dangerous disruptions in many applications (such as fusion reactors), 
our goal here is to add an external electric field in order to suppress (or delay) the instability. Thus, our objective functional is set to

𝐽 (𝑓 ) = 1
2
‖𝑓 (40, ⋅𝑥, ⋅𝑣) − 𝑓 eq(⋅𝑣)‖22 .

As in the previous example, we parametrize the external electric field using Fourier modes, i.e.,

𝐻(𝑥) =
∑
𝑘∈𝐾

𝑎𝑘 cos
(
1
2𝑘𝑥

)
,

where 𝐾 ⊂ℕ. Note that here we choose only cosine modes due to the form of the initial perturbation.

To build some basic understanding of the landscape of the objective function, we first present a parameter scan for a small number 
of Fourier modes, as was done in the previous section. For a single Fourier mode, we can reduce the objective functional somewhat, 
from approx 𝐽 ≈ 0.92 for 𝐻 = 0 to 𝐽 ≈ 0.4 for the optimized solution. However, we require a relatively large electric field (𝑎 ≈ 0.15) 
compared to the initial perturbation (𝛼 = 10−3) to do it (see Fig. 9).

At first sight, for two modes the situation looks similar (see the middle top of Fig. 9). However, when we zoom in to consider 
the case when the parameters take on small values, an interesting landscape for 𝐽 appears; see the first two plots of Fig. 10. When 
the initial guess starts in this region, the objective functional decreases significantly along the gradient descent direction, up to 
15

approximately 0.2. This provides a stark contrast to the one-mode situation where the parameter needs to be one magnitude bigger 



Journal of Computational Physics 498 (2024) 112662L. Einkemmer, Q. Li, L. Wang et al.

Fig. 9. A one-dimensional parameter scan for 𝐾 = {1}, 𝐾 = {2}, and 𝐾 = {3} is shown on the top left and a two-dimensional parameter scan for 𝐾 = {1, 2} is shown 
on the top middle. The convergence of Algorithm 3 for two different initial guesses/two configurations is shown on the top right. The corresponding distribution 
function at time 𝑡 = 40 is shown along with the target at the bottom.

Fig. 10. A parameter scan for 𝐾 = {1, 2} and 𝐾 = {2, 3} is shown on the top. The convergence of Algorithm 3 for two different initial guesses is shown on the top 
right, and the corresponding distribution function at time 𝑡 = 40 is shown at the bottom.

to achieve even a 𝐽 value of approximately 0.4. That is, the size of the external electric field required is reduced by approximately an 
order of magnitude. We also note that, as for the focus beam problem, convergence of the proposed optimization algorithm is rapid, 
at most two iterations are required for this example. However, as seen in the later three plots of Fig. 10, even in this situation, the 
instability in the phase space is still only partially suppressed.

Like the focus beam example, we expect increasing the number of tuning Fourier modes would bring better stability. To do so, we 
use 𝐾 = {1, … , 5} and thus run the optimization in this five-dimensional problem. Once again, we employ a hybrid approach that 
uses a global genetic optimization algorithm combined with gradient-descent polishing of chosen candidates per iteration. In Fig. 11, 
we show three genetic algorithm runs using three different initial configurations. In each run, three candidate solutions are deployed. 
16

Initial configuration A presents the best candidate that we have found that reduces the objective functional to 𝐽 ≈ 2.4 ⋅ 10−3, and 



Journal of Computational Physics 498 (2024) 112662L. Einkemmer, Q. Li, L. Wang et al.

Fig. 11. Algorithm 3 is ran for 𝐾 = {1, … , 5} with three different initial guesses. The convergence in iteration is shown on the top right and the obtained distribution 
functions at 𝑡 = 40 are shown on the bottom. For initial configuration 𝐴, 𝐵 and 𝐶 are given in Table 2. The best obtained solution has 𝐽 ≈ 2.4 ⋅ 10−3 generated by 
[𝑎1 , … , 𝑎5] = [0.00000591, −0.00003512, 0.00134810, −0.01075167, 0.01016702].

Table 2

Initial guesses for Algorithm 3 for problem shown in Fig. 11.

init. config. A B C

𝑎1 −0.00016439 0.00015670 −0.00018648
𝑎2 −0.00003536 −0.00016387 −0.00043187
𝑎3 0.00135148 0.00113154 0.00172712
𝑎4 −0.01075463 −0.01082209 −0.01063006
𝑎5 0.01016917 0.01086655 0.01045662

correspondingly, the solution on the phase space even up to 𝑡 = 40 is almost indistinguishable from the target, well preserving the 
equilibrium. We also see that while convergence is rapid, the value of 𝐽 obtained depends significantly on the initial configuration.

It is worth noting that the optimal external field is rather small but already performs well, suppressing the instability effectively. 
To better understand the mechanism, we examine the magnitude of Fourier modes of the self-consistent electric field 𝐸 and plot their 
evolution in time. As seen in Fig. 12, in the case of 𝐻 = 0, all Fourier modes are unstable, achieving high amplitude at the final time 
𝑡 = 40. In particular, 𝑘 = 1 and 𝑘 = 2 take on high values and have exponential growth very quickly. This observation is consistent 
with the linear theoretical analysis that predicts exponential growth rate at approximately 0.226 for 𝑘 = 1 and 0.15 for 𝑘 = 2 using 
the parameters for this particular example; see, e.g., [64]. The higher modes initially are stable according to the linear theory, but 
due to the nonlinear coupling, the linear theory eventually fades off, and the instability sets in. The instability continues growing in 
time until the electric field is large enough (𝐸 ≈ 0.5) such that strongly nonlinear effects take over and lead to saturation.

We now examine the stability brought to these Fourier modes when the small external electric field is added. We impose the 
optimal 𝐻 we found from Run-A in Fig. 11 to the plasma dynamics, and we see that this external field is able to suppress the growth 
of the unstable modes. Considering that the initial perturbation to the phase space distribution is relatively small, the external field 
only needs to control this perturbation, providing an intuitive explanation that a small field can already preserve the beam structure. 
We should note that based on the linear theory, all modes are decoupled. Thus, the linear theory cannot provide a mechanism 
for explaining the suppression of higher modes using 𝐻 that contains only lower frequencies. This instability-suppressing effect 
represented here is a fully nonlinear mechanism that mixes all modes of information, as seen in the bottom plot of Fig. 12.

It should, however, be noted that, in this case, the instability is only suppressed over the time interval for which the optimization 
is done. This is illustrated in Fig. 13: the optimization solution is achieved by setting the objective function evaluated at 𝑡 = 40, but 
we use the same configuration to run further into the future time horizon. It can be seen that eventually, the tendency of the most 
unstable 𝑘 = 1 mode to grow exponentially leads to an onset of the instability at 𝑡 = 50 and saturation around 𝑡 = 70. This strongly 
17

indicates that the imposition of an external field can only delay the two-stream instability but not completely eliminate it.
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Fig. 12. Snapshots of the electric field 𝐸 using 𝐻 = 0 and the optimal 𝐻 from results displayed in Fig. 11 are shown on the top. The plot in the second row shows 
the first five Fourier modes of 𝐸 with 𝐻 = 0: They clearly demonstrate the exponential growth that suggests instability. The plot on the bottom shows the evolution 
of the electric field 𝐸 when the optimal external field (found by the optimization algorithm) is applied. The external field invokes all Fourier modes to be excited but 
none present exponential growth. These modes nonlinearly interact, providing overall stability.

Fig. 13. The first five Fourier modes of the self-generated electric field 𝐸 are shown as a function of time when the VP system is imposed by the found optimized 
external field 𝐻 , found through running optimization up to 𝑡 = 40 (as indicated by the black dashed vertical line). Over this time interval, the mixing of the modes 
suppresses the instability. As one continues running the VP system, in the long time horizon, the instability of the 𝑘 = 1 mode manifests itself, leading to an exponential 
growth of the electric energy. The nonlinearity eventually kicks in, capping off the growth at saturation.

6. Conclusion

Fusion energy holds the promise of clean, safe, and virtually limitless energy generation, and to a large extent, many fusion energy 
engineering problems boil down to plasma control, with prominent examples being the tokamak and stellarator design. The current 
paper initiates a line of study that looks into the mathematical formulation and optimization strategies for controlling the behavior 
of plasma on the kinetic level using the Vlasov–Poisson equation as the forward model, with a semi-Lagrangian discretization. Our 
current formulation has yet to mature to apply to state-of-the-art engineering problems, and advancements are required on multiple 
fronts. These include exploring different optimization strategies, employing various plasma models, and considering alternative 
forward solvers. All of these choices have an impact on the final output of the optimization algorithm. Nevertheless, our findings 
reveal a universal challenge inherent in all formulations: the hyperbolic nature of plasma dynamics, which leads to filamentation in 
solutions resembling wave-type instabilities in the associated PDE-constrained optimization problem.

This non-convexity in the objective function landscape, reminiscent of the cycle-skipping behavior observed in Helmholtz-type 
inverse problems [42], highlights the significant challenge at hand. The wave-type inverse problem has garnered a lot of research in-

terest and has triggered the development of many techniques, such as modifications to the full-waveform inversion (FWI), qualitative 
analysis [11], and landscape reshape [31]. We expect these results to be useful for handling the non-convexity in plasma control. In 
this work, we tackled the non-convexity challenge by using a combination of global and local optimization algorithms to exploit and 
explore the optimization landscape, respectively. This opens the door for further investigation along the direction of optimization 
18

algorithms employment for a practical tool to mitigate this challenge.
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