

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  OCTOBER 06 2023

Generative modeling of time-dependent densities via optimal
transport and projection pursuit 
Jonah Botvinick-Greenhouse   ; Yunan Yang  ; Romit Maulik  

Chaos 33, 103108 (2023)
https://doi.org/10.1063/5.0155783

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha/article/33/10/103108/2915710/Generative-modeling-of-time-dependent-densities
https://pubs.aip.org/aip/cha/article/33/10/103108/2915710/Generative-modeling-of-time-dependent-densities?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/10/103108/2915710/Generative-modeling-of-time-dependent-densities?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0009-0005-4690-0404
javascript:;
https://orcid.org/0000-0001-7238-7978
javascript:;
https://orcid.org/0000-0001-9731-8936
javascript:;
https://doi.org/10.1063/5.0155783
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2337831&setID=592934&channelID=0&CID=859216&banID=521736571&PID=0&textadID=0&tc=1&scheduleID=2256935&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1708534055252690&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0155783%2F18160126%2F103108_1_5.0155783.pdf&hc=3b839f073f99074958d02047181348a9bda62a05&location=


Chaos ARTICLE pubs.aip.org/aip/cha

Generative modeling of time-dependent densities
via optimal transport and projection pursuit

Cite as: Chaos 33, 103108 (2023); doi: 10.1063/5.0155783

Submitted: 23 April 2023 · Accepted: 11 September 2023 ·
Published Online: 6 October 2023 View Online Export Citation CrossMark

Jonah Botvinick-Greenhouse,1,a) Yunan Yang,2,b) and Romit Maulik3,4,a)

AFFILIATIONS

1Center for Applied Mathematics, Cornell University, Ithaca, New York 14850, USA
2Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
3College of Information Science and Technology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
4Joint Appointment Faculty, Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439,

USA

a)Authors to whom correspondence should be addressed: jrb482@cornell.edu and rmaulik@anl.gov
b)Electronic mail: yunan.yang@cornell.edu

ABSTRACT

Motivated by the computational difficulties incurred by popular deep learning algorithms for the generative modeling of temporal densities,
we propose a cheap alternative that requires minimal hyperparameter tuning and scales favorably to high-dimensional problems. In particular,
we use a projection-based optimal transport solver [Meng et al., Advances in Neural Information Processing Systems (Curran Associates,
2019), Vol. 32] to join successive samples and, subsequently, use transport splines (Chewi et al., 2020) to interpolate the evolving density.
When the sampling frequency is sufficiently high, the optimal maps are close to the identity and are, thus, computationally efficient to
compute. Moreover, the training process is highly parallelizable as all optimal maps are independent and can, thus, be learned simultaneously.
Finally, the approach is based solely on numerical linear algebra rather than minimizing a nonconvex objective function, allowing us to easily
analyze and control the algorithm. We present several numerical experiments on both synthetic and real-world datasets to demonstrate the
efficiency of our method. In particular, these experiments show that the proposed approach is highly competitive compared with state-of-
the-art normalizing flows conditioned on time across a wide range of dimensionalities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155783

Deep learning algorithms for generative modeling of

time-dependent data may face difficulties related to optimal

hyperparameter selection and can be computationally expensive.

In this work, we instead propose using a generative model based

on numerical linear algebra and projection pursuit optimal trans-

port, which requires only a few hyperparameter choices. We

demonstrate the effectiveness of our model on synthetic data of

stochastic dynamical systems and real-life examples of fish school-

ing and embryoid growth. These experiments show that our pro-

posed approach is highly competitive with a state-of-the-art deep

learning algorithm that learns to sample from time-dependent

densities in terms of efficiency, accuracy, and interpretability.

I. INTRODUCTION

A. Motivation

In recent times, there have been several studies that have
investigated the use of machine learning algorithms for learning

time-varying stochastic processes. Such processes are visible in
many applications ranging from geoscience, bioscience, and engi-
neering to computer vision. In particular, deep learning algo-
rithms, such as neural network parameterized normalizing flows,
neural ordinary differential equations, diffusion models, and gen-
erative adversarial networks, have shown remarkable advances
in learning and enabling rapid sampling from these stochas-
tic processes. Such advances are further pronounced for very
high-dimensional systems where classical methods are seen to
saturate their effectiveness. However, the effective use of deep
learning is frequently hampered by difficulties associated with
computational cost as well as optimal hyperparameter selec-
tion. In this article, we propose a novel approach based on
projection-pursuit optimal transport, which learns to sample
from the densities of time-varying stochastic processes. It is
competitive (both in terms of computational cost and accuracy) with
a state-of-the-art deep learning algorithm (given by the neural spline
flow). Crucially, our proposed method requires few hyperparameter
choices by the user in contrast with most neural network-based

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-1

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0155783
https://doi.org/10.1063/5.0155783
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0155783
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0155783&domain=pdf&date_stamp=2023-10-06
https://orcid.org/0009-0005-4690-0404
https://orcid.org/0000-0001-7238-7978
https://orcid.org/0000-0001-9731-8936
mailto:jrb482@cornell.edu
mailto:rmaulik@anl.gov
mailto:yunan.yang@cornell.edu
https://doi.org/10.1063/5.0155783


Chaos ARTICLE pubs.aip.org/aip/cha

methodologies. Thus, our main contributions to this work are as fol-
lows:

(1) We implement a projection-pursuit optimal transport-based
method to learn maps between time-varying densities from
snapshots of particles sampled from these densities.

(2) We utilize a state-of-the-art cubic spline-based interpolation
technique for trajectories of samples from the approximated
densities, allowing us to smoothly interpolate between training
data snapshots in time.

(3) We thoroughly compare our approach with a state-of-the-art
neural network parameterized normalizing flow, demonstrating
competitive performance for several systems over a wide range
of dimensions.

Throughout, a “snapshot” refers to a collection of samples drawn
from the underlying density at a fixed time.

B. Related work

Data-driven approaches for constructing models of complex
dynamical systems have received considerable attention within sev-
eral fields of study. Stochastic differential equations (SDEs) are
often used to model physical processes whose dynamics are either
probabilistic in nature or well approximated by randomness. By
leveraging prior knowledge about the functional form of a given
SDE, one can use parameter estimation techniques to calibrate
governing equations to available sample path data.1–4 Moreover,
advancements in machine learning have led to models that param-
eterize the drift and diffusion of SDEs by neural networks.5–7 Other
methods include the use of variational inference,8 which assumes a
Gaussian structure for the target probability density function. How-
ever, such approaches rely on prior knowledge of the noise process
that drives the dynamics and may be infeasible if this information is
unavailable.

Notably, Refs. 9–13 overcome this challenge by deploying gen-
erative machine learning frameworks based on normalizing flows to
learn the time-dependent density of trajectories without imposing
any assumptions on a noise process or underlying functional form
of the dynamics. A normalizing flow constructs a map from a known
reference density to a target density via a sequence of parameter-
ized invertible transformations.14 These transformations may also
rely on the neural ordinary differential equation architecture15 as the
parameterization algorithm in which they are considered continu-
ous normalizing flows.16 One can also learn a time-dependent target
density using the so-called conditional normalizing flows.17

Other assumption-free methods for learning time-varying
stochastic processes include using generative adversarial networks,18

which is a class of algorithms where two neural networks compete
with each other in the form of a zero-sum game. A discriminator is
trained to detect fake samples of the distribution, while a generator
attempts to fool the discriminator. Given samples from a training
distribution, this technique learns to generate new data with the
same statistics as the training set. However, these methods are chal-
lenging to train and require significant inductive biases to adapt to
scientific applications.19,20 Newer techniques for learning densities
include diffusion models inspired by non-equilibrium thermody-
namics, which define a Markov chain of diffusion steps that adds

random noise to training data and, subsequently, learn the inversion
of this process, using a neural network to generate synthetic data.21

Training neural network-based models, such as normalizing
flows is compute-intensive, and this is due to the requirement of
large-scale nonconvex optimizations as well as expensive hyperpa-
rameter and neural architecture searches. Therefore, it is desirable
to investigate alternatives that can accelerate workflows reasonably
by reducing the number of restarts for new hyperparameters and
architecture choices. In the following, we put forth a competitive
new approach.

C. Our approach

As mentioned above, normalizing flows often require large
neural network architectures, which demand a long training time
and careful hyperparameter tuning. Due to these challenges, we pro-
pose an alternative approach based upon optimal transport (OT)22

and projection pursuit,23 which can circumvent these difficulties.
Rather than learning an invertible map between a reference den-
sity and several snapshots of samples, we learn an optimal transport
map (OTM) from a reference density to the first snapshot of samples
and join the remaining snapshots with successive optimal transport
maps. This provides a generative model for the dynamics when sam-
ples were collected. With additional assumptions on the regularity
of the stochastic process, the learned optimal transport maps can
also be used to interpolate between snapshots smoothly. The con-
trast with a normalizing flow-based generative model is illustrated
in Fig. 1. Modeling stochastic systems using optimal transport in
this way has several computational benefits. Notably, if the infer-
ence data are sampled at a sufficiently high frequency, then the
optimal transport maps will not deviate significantly from the iden-
tity and will, therefore, be cheap to approximate. Moreover, the
procedure can be easily paralleled since the approximation of the
optimal map between two snapshots is unaffected by the optimal
maps at other times. While OT has been used to model time-
dependent densities in Refs. 24 and 25 and has also been combined
with normalizing flows,26 our approach investigates how it may
be deployed for high-dimensional systems, representative of real-
world applications, by using projection pursuit regression, thereby
making it competitive with techniques such as the normalizing
flow.

We accelerate the process of finding the OT map using the
Projection Pursuit Monge Map (PPMM) algorithm presented in
Ref. 27. The approach is inspired by projection pursuit regression23

as it seeks to estimate high-dimensional optimal transport maps by
learning several one-dimensional optimal transport maps along the
most “informative” projection directions. The PPMM algorithm is
an iterative approach, and at the kth step of the algorithm, the pro-
jection direction is selected to maximize the discrepancy [measured
using the so-called sliced average variance estimation (SAVE)28]
between projections of the current samples and target samples. The
PPMM algorithm empirically exhibits fast convergence and scales
well to high-dimensional problems. It must be noted that the PPMM
procedure used to approximate optimal transport maps is based
solely on numerical linear algebra instead of minimizing a non-
convex objective function. It can be analyzed and controlled using
standard tools in numerical analysis.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-2

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 1. Illustration of the two generative models. The left panel shows a gen-
erative model obtained by mapping between successive snapshots via optimal
transport maps, whereas the right panel shows the generative model obtained by
mapping a known reference distribution to each snapshot.

After using PPMM to learn optimal transport maps between
snapshots, we use the transport splines framework in Ref. 25
to quickly interpolate the samples. While various methods for
performing interpolation in Wasserstein space exist, e.g., Ref. 24,
we elect to use transport splines for their ease of implementa-
tion and computational feasibility. Indeed, the transport splines
approach reduces the problem of interpolating a curve of measures
to the Euclidean interpolation of Lagrangian trajectories, which are
determined by the optimal coupling between snapshots. Through
several numerical experiments on synthetic and real-world datasets,
we illustrate that the proposed method exhibits faster convergence
and higher accuracy in many situations than state-of-the-art neu-
ral spline flows.29 As the dimensionality of the state space becomes
sufficiently large (e.g., d = 30), we observe that this performance
gap becomes small, but that our proposed method is still more
computationally efficient.

The rest of the paper is structured as follows. In Sec. II, we
review the necessary background on optimal transport, the PPMM
algorithm, and normalizing flows. In Sec. III, we discuss how we
adapt both PPMM and normalizing flows to the time-dependent
setting and review the generative algorithms shown in Fig. 1 in
detail. In Sec. IV, we provide numerical results based on synthetic
snapshot data from high-dimensional Fokker–Planck equations and
real-world biological applications to fish schooling and embryoid
growth. Conclusions follow in Sec. V.

II. BACKGROUND

This section provides an overview of optimal transport and
normalizing flows as tools for constructing generative models of
stationary densities. In Sec. II A, we review the theory of optimal
transport and introduce the PPMM algorithm. In Sec. II C, we pro-
vide an overview of normalizing flows as well as the neural spline

flow architecture,29 which we use for our numerical experiments in
Sec. IV.

A. Projection pursuit Monge map

The projection pursuit Monge map (PPMM) algorithm intro-
duced in Ref. 27 provides an efficient approach to computing
optimal transport maps in high dimensions. The method utilizes
tools from projection pursuit regression,23 as well as the sufficient
dimension reduction technique of sliced average variance estimation
(SAVE).28 At each iteration, the SAVE procedure is used to choose
a projection direction that maximizes the discrepancy between the
variance of projections of the current and target samples. A one-
dimensional OT map is then learned along this projection direction
and is used to transport the collection of current samples accord-
ingly. To discuss the PPMM algorithm more precisely, we now
introduce a few concepts from the theory of optimal transport.

Let X : Rd → R and Y : Rd → R be two continuous random
variables, with corresponding densities pX and pY. We say that a
measurable function φ : Rd → Rd is a transport map between pX

and pY if for all Borel measurable sets B, it holds that µX(φ
−1(B))

= µY(B), where µX and µY denote the measures induced by the
densities pX and pY, respectively. Since µX and µY are absolutely
continuous by assumption, we also have that φ is a transport map
if φ is invertible and (1) holds

pY(x) = pX(φ
−1(x))| det Dφ−1(x)|. (1)

Though there may be many such transport maps, the goal is to
recover one that is optimal in some sense. Toward this, we intro-
duce a function c(x, y), which represents the cost of transporting a
point mass x ∈ Rd to another point mass y ∈ Rd. Given a transport
map φ : Rd → Rd and cost c : Rd × Rd → R, we define the overall
transport cost as ∫

Rd
c(x,φ(x))pX(x)dx. (2)

Typically, one fixes p ∈ [1, ∞) and uses the cost c(x, y) = |x − y|p,
where | · | denotes the Euclidean norm. Provided that X and Y
have finite moments of order p, this construction gives rise to the
p-Wasserstein distance

Wp(pX, pY) :=
(

inf
φ∈8

∫

Rd
|x − φ(x)|ppX(x)dx

)1/p

. (3)

In (3), 8 denotes the collection of all transport maps from pX to pY.
For a particular choice of p ∈ [1, ∞), we will hereafter denote by
φ∗ ∈ 8 the transport map for which the infimum (3) is achieved.

The optimal transport map φ∗ and p-Wasserstein distance are
popular tools in the machine learning community for training gen-
erative models. While (3) can be used as the loss function to train
a given model,30 one can also use the mapping φ∗ as the generative
model itself.31 We adopt the latter approach. Given N samples X,
Y ∈ RN×d drawn from the densities pX and pY respectively,
the PPMM algorithm constructs k-step approximations φ̂k (see

Algorithm 1) and Ŵ(k)
2 [see (5)] of the true OT-map φ∗ and the

2-Wasserstein distance (3), respectively.
We remark that the output φ̂k of the PPMM algorithm is

defined recursively by setting φ̂0(x) = x and

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-3

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

Algorithm 1. Projection Pursuit Monge Map (PPMM)27

Input: X, Y ∈ RN×d.
Set X0 = X and k = 0.

Until convergence:

(a) Use SAVE to compute the projection direction pk ∈ Rd between Xk and Y.
(b) Compute the one-dimensional OT-map ηk between the projections Xkpk and Ypk.
(c) Set Xk+1 = Xk +

(
ηk(Xkpk)− Xkpk

)
pT

k and k = k + 1.

Output: {p`}k−1
`=0 and {η`}k−1

`=0, which form the OT approximation φ̂k : Rd → Rd given in (4).

φ̂`+1(x) = φ̂`(x)+
(
η`

(
φ̂`(x)p`

)
− φ̂`(x)p`

)
pT
` , 0 ≤ ` ≤ k − 1.

(4)

In step (a) of Algorithm 1, the projection direction pk is chosen to
maximize the discrepancy between Var(X(k)pk) and Var(Ypk). In
step (b), a one-dimensional (1D) OT-map ηk is computed between
the projected samples Xkpk and Ypk. Finally, in step (c), the collec-
tion Xk of current samples is updated according to the transport

map ηk. We note that in Ref. 27, the 1D OT maps {η`}k−1
`=0 from

(b) are computed via sorting and interpolation. This is because the
1D optimal transport problem has an analytical solution, which the
Quicksort algorithm can efficiently compute in O(N log N) time. In
Sec. II B, we propose an alternative approach for computing the 1D
maps η`, which is more efficient when N is large, acts as a helpful reg-
ularization when N is small, and extends the domain of η` to all of R.
By modeling each η` as a mapping from R → R, we then have that
the approximation φ̂k is a mapping from Rd → Rd, as given in (4).
This perspective motivates the use of PPMM as a generative model.
We remark that weak convergence of Algorithm 1 has been proven
(see Ref. 27, Theorem 3) and that its computational complexity has
been studied (see Ref. 27, Sec. 2).

In our implementation of PPMM in Sec. IV, we also enforce
a relative stopping criterion that terminates the algorithm after
convergence of the approximate 2-Wasserstein distance

Ŵ(k)
2 (X, Y) :=

(
1

N

N∑

i=1

∥∥φ̂k(xi)− xi

∥∥2

)1/2

(5)

begins to slow down. That is, we specify a tolerance α ∈ [0, 1] and
terminate PPMM when

∣∣Ŵ(k(α))
2 (X, Y)− Ŵ(k(α)−1)

2 (X, Y)
∣∣

∣∣Ŵ(k(α))
2 (X, Y)

∣∣ ≤ α, (6)

where k(α) ∈ Z+ is the last iteration number. Note that the con-
vergence criteria (6) does not rely on a knowledge of W2(pX, pY).
Thus, we can use it in applications where the ground truth solu-
tion is unknown. Moreover, since we will ultimately be interested in
applying PPMM to many pairs of snapshots simultaneously, using
the convergence criteria (6) ensures that we spend most of our com-
putational efforts learning the optimal transport maps along the
dominant directions. While we have stated the PPMM algorithm
for the case when X, Y ∈ RN×d, we note that it can also be used to
learn the OTM between distributions when the sample sizes are not
equal.

B. Regularizing the optimal transport maps

The one-dimensional optimal maps η` in Algorithm 1 are
computed according to the quicksort algorithm, which runs in
O(N log N) time. However, when N is sufficiently large, it can be
computationally advantageous to instead form histogram approxi-
mations using B � N cells of the underlying samples and learn the
optimal map according to the weighted histogram cell centers. More
specifically, assume we want to learn the optimal map between den-
sities ρ1, ρ2 : R → [0, ∞) from the observed samples x, y ∈ RN with
x ∼ ρ1 and y ∼ ρ2. The true optimal map is given by G−1 ◦ F, where
F and G denote the cumulative distribution functions (CDFs) of ρ1

and ρ2, respectively.32 Thus, we use a kernel density estimate (KDE)

based upon the Gaussian kernel to obtain approximations F̂ and Ĝ
of the CDFs and compute the underlying optimal map as

η(x) :=
{

f2(f1(x)) x ∈ ϒ
Id(x) x 6∈ ϒ

, f1 := Interp(z, F̂ ), f2 := Interp(Ĝ, z). (7)

In (7), Interp(·, ·) denotes a piecewise linear interpolation and
z ∈ RB is a vector containing B equally spaced histogram cell
centers over the interval ϒ := [min{x, y} − L, max{x, y} + L] ⊆ R.
The constant L > 0 should be chosen large enough such that

the effective support of the approximate densities is strictly
contained in ϒ . We remark that the KDE of the binned sam-
ples can be evaluated at the equidistant grid points z ∈ RB in
O(B log B) time based on an approach using the fast Fourier

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-4

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

transform (FFT).33 Moreover, to enforce strict monotonicity of the

approximate CDFs, F̂ and Ĝ, we rescale the densities obtained
from the KDE by adding a small positive constant ε > 0 and
renormalizing.

The density estimation can heavily depend on the KDE
bandwidth, so the bandwidth should be chosen carefully and in
accordance with the observed data. A bandwidth that is too small

will overfit the training data, whereas a bandwidth that is too large

may result in an over-smoothed distribution. While the use of an

FFT-based KDE can be computationally advantageous when mod-

eling the OT maps η` for large values of N, it can also serve as a

useful regularization in the low-data limit. Indeed, when N is small,

the selection of a sufficiently large bandwidth for the KDE effec-

tively injects additional noise in the under-representative training
samples. This helps compensate for the small number of observa-
tions and prevents overfitting. Otherwise, we select the bandwidth
according to either Scott’s method34 when the data are close to uni-
modal or the improved Sheather–Jones (ISJ) method35 when the data
are multimodal.

C. Neural spline flows

Normalizing flows deliver alternative approaches to the gen-
erative modeling of samples drawn from a probability distribution.
While the PPMM algorithm only provides a generative model for
samples of the underlying density, a normalizing flow learns the
density itself. Moreover, while OT-based methods seek to construct
an optimal mapping between samples between reference and tar-
get densities, normalizing flows learn a transport map that is not
necessarily optimal in the sense of (3).

We now describe the optimization procedure by which a nor-
malizing flow learns a transport map from a known reference den-
sity to a target density. Specifically, assume that pX : Rd → R is
the probability density function of the continuous random variable
X : Rd → R and that g : Rd → Rd is invertible with f := g−1. For
the random variable Y := g ◦ X with corresponding density pY, the
change of variables formula for probability densities is given in (1)
with the map φ replaced by g here. By rewriting g = gK ◦ · · · ◦ g1 as
the composition of K bijective functions, the determinant det Df can
be evaluated as

det Df(x) =
K∏

i=1

det Dfi(xi), xi :=
{

x i = K

(fi+1 ◦ · · · ◦ fK)(x) 1 ≤ i < K
, fi := g−1

i .

If one samples the data matrix Y ∈ RN×d from an underlying density
pY, a normalizing flow can be used to estimate pY by parameter-
izing the family of bijections g = gθ by θ ∈ 2 and performing the
optimization

max
θ∈2

Lθ , Lθ := 1

N

N∑

n=1

(
log pX(fθ (Yn))+ log

∣∣ det Dfθ (Yn)
∣∣
)
.

(8)

In (8), we have written Yn to denote the nth sample of Y and again
fθ := g−1

θ . The density pX is a known reference distribution (usually
taken to be Gaussian). During training, the flow learns to transport
the samples Y to samples of pX via the mapping fθ . Since fθ is bijective
with an inverse gθ , the flow can also be used to generate new samples
from pY once it has been trained, simply by applying the mapping gθ
to new samples drawn from pX.

We use neural spline flows29 for their state-of-the-art capabil-
ities in modeling high-dimensional densities. Specifically, we study
neural spline flows based upon coupling transforms ψm : Rd → Rd

of the form

ψm(x1, . . . , xm−1, xm, . . . , xd) = (x1, . . . , xm−1, hθm(xm), . . . , hθd(xd)),

(9)

where the family {hθj}
d

j=m
of functions are invertible and parameter-

ized by (θm, . . . , θd), which is set as the output of a neural network
with inputs {x1, . . . , xm−1}, i.e., NN(x1, . . . , xm−1). Essentially, (9)
splits an input vector at the index 1 ≤ m ≤ d and applies a transfor-
mation parameterized by (x1, . . . , xm−1) to the entries (xm, . . . , xd).

It is also common to permute the entries of the input x ∈ Rd before
passing through the transform (9). Coupling transforms enable a
seamless computation of the Jacobian determinant, as Dψm is by
construction block triangular. Indeed, the Jacobian determinant can
be evaluated as the product

det Dψm =
d∏

j=m

∂hθj

∂xj

.

To improve the approximation power of coupling transforms (9),
neural spline flows parameterize the functions hθj as families of

monotonic rational-quadratic splines. To allow all parameters of the
flow to interact with one another, the flow architecture typically
alternates between spline-based coupling layers and linear layers.
The linear layers are based upon the PLU decomposition, where at
the beginning of training, the permutation matrix P is fixed and the
matrices L and U are learned. As in Ref. 29, a single step of the flow
consists of a spline layer and a linear layer.

Following Ref. 29, we refer to the number of knots in the mono-
tonic rational-quadratic splines hθj as the number of bins. A tail

bound of b > 0 is prescribed for the splines hθj such that the func-

tions hθj(x) are extended to be strictly linear when |x| > b. This

allows the flow to evaluate unconstrained inputs (see Ref. 29, Fig. 1).
Moreover, the neural network, which computes the parameters θj

in the coupling transform, is taken as a residual network with pre-
activation blocks. Our experiments in Sec. IV utilize ten-step RQ-
NSFs with eight bins, two residual blocks with 128 hidden features,
and a tail bound of b = 3. This is the same architecture that achieved

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-5

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

state-of-the-art density estimation results in Ref. 29. Since we are
interested in efficient density estimation, we also test a Reduced RQ-
NSF architecture, which consists of only two steps. This architecture
can be trained quickly and provides an expedient means for calcu-
lating likelihoods. However, it reduces the approximation power of
the flow compared to the ten-step framework.

III. METHODS

In this section, we formally introduce dynamic PPMM and
adapt the RQ-NSF framework to the time-dependent setting. We
begin in Sec. III A by discussing an alternative approach to comput-
ing the one-dimensional OT maps in the PPMM algorithm. We then
proceed by formally stating the dynamic PPMM algorithm, review-
ing the transport splines algorithm presented in Ref. 25 and com-
menting on the computational complexity of training the model.
We conclude in Sec. III B by explaining how conditional normal-
izing flows36 can be used to adapt the neural spline flow framework
from Sec. II C to the time-dependent setting.

A. Dynamic PPMM

We will assume that ρ(x, t) is a time-dependent density on Rd

and that at each observation time t1 < t2 < · · · < tM, we draw Nj

samples X(tj) ∈ RNj×d from ρ(x, tj). We now aim to use our collec-

tion {X(tj)}M

j=1 of time-dependent samples to sample from ρ(x, t), for

any t ∈ [t1, tM]. Our proposed approach involves using the PPMM
algorithm to join successive snapshots via optimal transport maps
and, subsequently, applying a Euclidean interpolation algorithm to
individual trajectories between the snapshots.

1. The algorithm

We now state the Dynamic PPMM algorithm, which for con-
venience, will be frequently referred to as D-PPMM.

Note that Y(t0) contains Ñ samples, where Ñ is the number of
new samples we wish to generate using D-PPMM. The D-PPMM
algorithm has only a handful of tunable parameters, most of which
are related to the construction of the one-dimensional optimal maps
(see (7)). The hyperparameters that can affect the performance of
Algorithm 2 include the convergence tolerance α ∈ [0, 1], the KDE
bandwidth selection method, the number of histogram cells B, the
base normal distribution N (ν,0), and the constants L, ε > 0 (see
Sec. II B). We find that the algorithm’s performance is relatively
insensitive to the choice of ν, 0, L, and ε. Thus, throughout our
experiments in Sec. IV, we leave the base normal distribution fixed
with ν = 0 and 0 = 0.01I where I is the identity matrix, and we set
ε = 10−8 and L = 0.1 or L = 0.25.

2. Interpolation via transport splines

To extend Algorithm 2 to a generative model for ρ(x, t), for
any t ∈ [t1, tM], we use the transport splines algorithm introduced
in Ref. 25. This approach involves first coupling the snapshots

via optimal transport maps, e.g., computing the output {Y(tj))}M

j=1

of Algorithm 2. Then, for each n ∈ {1, . . . , Ñ}, the trajectories

{(tj, Y
(tj)
n )}

M

j=1
are interpolated in Euclidean space via cubic splines.

Algorithm 2. Dynamic PPMM (D-PPMM)

Input: Measurement times {tj}M
j=1

and samples {X(tj)}M

j=1.

Training:

Sample the rows of X(t0) ∈ RN1×d i.i.d. from N (ν,0).

For j ∈ {0, . . . , M − 1} do:

Use PPMM (Algorithm 1) to estimate the OTM φ̂
(tj)

kj(α)
between

X(tj) and X(tj+1),

where each 1D OTM is given by the procedure in Sec. II B.

Testing:

Sample the rows of Y(t0) ∈ RÑ×d i.i.d. from N (ν,0).

For j ∈ {1, . . . , M} do:

Assign Y(tj) = φ̂
(tj−1)

kj(α)
(Y(tj−1))

Output: New samples {Y(tj)}M

j=1.

That is, for each fixed n, we compute its spline interpolant pn :
[t1, tM] → Rd,

pn := Spline

(
[t1, t2, . . . , tM], [Y(t1)n , Y(t2)n , . . . , Y(tM)n ]

)
, (10)

where Spline(·, ·) denotes a cubic B-spline interpolation. Then,
for arbitrary t ∈ [t1, tM], we form the interpolating snapshot Y(t) by
evaluating

Y(t) =




p1(t)
p2(t)

...
pÑ(t)


 ∈ RÑ×d. (11)

We remark that no regularity assumptions are required if we sim-
ply aim to construct a generative model at the measurement times
t1 < t2 < · · · < tM, as in Algorithm 2. However, additional knowl-
edge of the underlying stochastic process may be required to justify
the use of cubic spline interpolation between measurement times,
as the approach25 was devised for stochastic processes with C2 sam-
ple paths. Thus, the use of transport spline interpolation is not
expected to be effective for discontinuous stochastic processes, such
as Cauchy noise or a jump process. Therefore, our application of
transport splines to real data in Secs. IV D and IV E assumes suffi-
cient regularity of the underlying processes. The transport splines
algorithm has theoretical approximation guarantees (see Ref. 25,
Theorem 2) and is computationally expedient as it reformulates
the problem of interpolating measures into the Euclidean interpo-
lation of individual trajectories. As the time between observations
decreases, so does the approximation power of the transport spline
interpolation.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-6

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

3. Computational complexity

We now discuss the computational requirements for training
Algorithm 2. For simplicity, we will assume that the Scott band-
width selection rule is used, and we will write kj(α) = kj as the
number of PPMM iterations, which are performed at each timestep.

Using PPMM to estimate each optimal map φ̂
(tj)

kj
incurs a cost of

O(kjNjd
2 + kjB log B) (see Ref. 27 and Sec. II B). We also remark

that empirical evidence suggests that kj = O(d) is expected to yield
good convergence of the PPMM algorithm (see Ref. 27, Fig. 8).
The first term in the complexity bound is due to the computa-
tion of the most informative projection direction via the SAVE
algorithm, whereas the second term is the cost associated with learn-
ing a one-dimensional optimal map via the procedure outlined in
Sec. II B. Thus, if we let K = max0≤j≤M−1 kj and N = max0≤j≤M−1 Nj,
we have that the total cost of training D-PPMM is given by O(KNd2

+ KB log B). Note that in this analysis, the cost associated with push-
ing the Nj samples through the OT maps at each step of training, as
well as the KDE bandwidth selection are absorbed in theO-notation.

B. Time-conditioned RQ-NSF

We now discuss how the normalizing flows from Sec. II C
may be adapted to the time-dependent setting. As in Sec. III A, we
consider the problem of learning the temporal density ρ(x, t) when

t ∈ [t1, tM], given the observations {X(tj)}M

j=1 at the times {tj}M
j=1

. Sim-

ilar to Ref. 11, we accomplish this by viewing the underlying density
as a distribution conditioned upon the time t, which we then model
via a conditional normalizing flow.17 In analogy with (1), we now
seek a mapping f : Rd × [t1, tM] → Rd such that

ρ(x, t) = pX|t(f(x, t))| det Dxf(x, t)|, x ∈ Rd, t ∈ [t1, tM],
(12)

where f(·, t) : Rd → Rd is a bijection for each fixed t ∈ [t1, tM]. Note
that in (12), the base distribution pX = pX|t is now conditioned
on time as well. Our goal is to learn a suitable base distribu-

tion pX|t and bijection f(x, t) from the data {X(tj)}M

j=1 such that (12)
holds. Toward this, we use nflows36 to simultaneously train an
RQ-NSF (see Sec. II C) along with two additional feed-forward net-
works, NN(1) : R → R and NN(2) : R → R2d, which learn the time-
conditioning in the bijection f(x, t) and the base distribution pX|t,
respectively. More specifically, the function f(x, t) is modeled as an
RQ-NSF with an additional dimension concatenated to account for
the sampling time, the inputs of which are given by NN(1) : R → R.
Moreover, we parameterize pX|t as a conditional diagonal nor-
mal distribution N (ν(t), diag(σ (t))) and model the functions ν : R

→ Rd and σ : R → Rd using NN(2) : R → R2d.
We use mini-batch training in which each step of the opti-

mization includes exactly the same number of samples from each
observation time tj. We also use the Adam optimizer and decay
the learning rate from 5 × 10−4 to 0 on a cosine schedule every
five epochs. Moreover, we parameterize NN(1) as a four layer fully
connected ReLU network with 100 nodes in each layer, and we
parameterize NN(2) as a fully connected ReLU network with a single
layer of 500 nodes. We note that the network architecture of both
time-conditioned Reduced RQ-NSF and time-conditioned standard
RQ-NSF have hundreds of thousands of tunable parameters. There

are clearly also many user-specified hyperparameters that can affect
the performance of the time-conditioned normalizing flow. We have
tried to make our conditional RQ-NSFs competitive through a man-
ual hyperparameter search. In this regard, a clear benefit of the
D-PPMM algorithm is that it has only a select few hyperparameters
which can be tuned (see Sec. III A 1).

To interpolate the density ρ(x, t) between two measurement
times {tj, tj+1} using the conditioned normalizing flow, we sim-
ply evaluate the right hand side of (12) for t ∈ [tj, tj+1]. Note that
the interpolation technique here differs from Sec. III A, where we
instead utilized the optimal coupling between snapshots to interpo-
late individual trajectories.

IV. NUMERICAL RESULTS

In this section, we compare D-PPMM with a time-conditioned
RQ-NSF through several numerical experiments (our implemen-
tations of D-PPMM and the time-conditioned RQ-NSF are pub-
licly available at https://github.com/jrbotvinick/Dynamic-PPMM).
All experiments were conducted using an Intel i7-1165G7 CPU. In
Sec. IV A, we introduce the synthetic dynamical system examples
and explain the data generation process. In Sec. IV B, we present
results comparing the two methods in the low-dimensional setting
when d < 5. In Sec. IV C, we move onto the high-dimensional
setting and study the convergence behavior of the generative mod-
els when d ∈ {10, 20, 30}. Finally, in Secs. IV D and IV E, we
study the interpolation capabilities of D-PPMM applied to two real-
world datasets from biological applications and compare the results,
both in terms of speed and accuracy, with the interpolation of a
conditioned RQ-NSF.

A. Data preparation and experimental setup

Throughout all experiments, we rescale the sample data to

belong to the cube [−1, 1]d ⊆ Rd via an affine transformation. We
also rescale the trajectory time interval to [0, 1] ⊆ R. We now dis-
cuss the preparation of the data used in Secs. IV B and IV C.
Throughout, we seek generative models for the sample paths of
stochastic differential equations of the form

dXt = v(Xt; θ)dt +
√

2DdWt, (13)

where v(·; θ) denotes a parameter-dependent velocity, D > 0 is the
diffusion, which for simplicity, we assume to be constant, and Wt

denotes a Brownian motion. We remark that the sample paths (13)
are described by the probability flow of a Fokker–Planck equation,
i.e., a density ρ(x, t) governed by the partial differential equation
(PDE),

∂

∂t
ρ(x, t)+ ∇ · (ρ(x, t)v(x; θ)) = D1ρ(x, t). (14)

We will denote by N the number of sample paths of (13), which
evolve over the time interval [0, T]. To obtain a numerical approxi-
mation of (13), we use the Euler–Maruyama discretization (Ref. 37,
Sec. 5.2), which assigns

Xj+1
n = Xj

n + v(Xj
n)1t + ξj

√
2D1t, (15)

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-7

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha
https://github.com/jrbotvinick/Dynamic-PPMM


Chaos ARTICLE pubs.aip.org/aip/cha

TABLE I. Equations and parameters for the synthetic dynamical systems studied throughout this section.

System v D θ X(t0) T

Van der Pol
ẋ1 = x2

ẋ2 = c(1 − x2
1)x2 − x1

2.5 × 10−3 c = 1

N (ν, σ 2I)

ν = (1, 1)

σ = 5 × 10−2

6

OU-process
ẋi = −λxi

1 ≤ i ≤ d, d ≥ 2
5 × 10−2 λ= 10−1

1

2

(
N (ν1, σ

2I)+ N (ν2, σ
2I)
)

νi = (10(−1)i, 10, . . . , 10)

σ = 5 × 10−2

15

Lorenz-96

ẋi = (xi+1 − xi−2)xi−1 − xi + F

x−1 = xd−1, x0 = xd, xd+1 = x1

1 ≤ i ≤ d, d ≥ 4

5 × 10−3 F = 2

N (ν, σ 2I)

ν = (4, 0, . . . , 0)

σ = 10−1

≤5

where ξj ∼ N (0, I) are i.i.d from the standard d-dimensional normal
distribution and1t > 0.

Throughout our experiments in Secs. IV B and IV C, we
study the Van der Pol oscillator, an Ornstein–Uhlenbeck process
(OU-process), and the Lorenz-96 system with additive stochastic
forcing. While the Van der Pol oscillator has a fixed dimensionality
of d = 2, we can manually adjust the dimensionality of the OU-
process and Lorenz-96 system. Table I details the specific param-
eter choices, diffusion coefficients, and initializations that we use
throughout our experiments. After approximating the sample paths
(13) via (15) over the time interval [0, T], we select M snapshots

{X(tj)}M

j=1 evenly spaced in time as the inference data during our
experiments. Each experiment in Secs. IV B and IV C uses a total
of M = 11 snapshots and N = 104 samples per snapshot.

We now discuss the process by which we quantify the error
of the two generative models. Both models are trained using the
same inference samples, while error is quantified by comparing
new samples from the generative models with a separate held-out
testing set from the ground truth dynamical systems. The error
in the generated samples from a given model is then determined
using the maximum mean discrepancy (MMD). Given collections
of samples X, Y ∈ RN×d, where X ∼ µ and Y ∼ ν, Ref. 38, Lemma 5
characterizes the empirical MMD as

MMD2
σ (X, Y) := 1

N(N − 1)

N∑

n=1

N∑

m6=n

(
γσ (Xn, Xm)+ γσ (Yn, Ym)

)

− 2

N2

N∑

n=1

N∑

m=1

γσ (Xn, Ym), (16)

where we denote by Xn the n-th row (or sample) of X and γσ is
the Gaussian kernel with bandwidth σ . An analogous formulation
also holds when the data matrices X and Y differ in size. Given that
the complexity of (16) is O(N2), we instead use the so-called linear-
MMD approximation (see Ref. 38, Lemma 14) when N is large (e.g.,

N = 104 in Secs. IV B and IV C). Moreover, due to the sensitiv-
ity of the MMD metric on the choice of kernel bandwidth σ , we
follow Ref. 39 by computing the so-called generalized MMD. This
involves evaluating (16) for a finite collection of bandwidths I ⊆ R

and reporting the maximum value. Throughout our tests, we choose
the elements of I logarithmically spaced between 10−2 and 102 with
|I| = 15. In situations when we compare the accuracy of the gener-
ative models at only a single snapshot (see Sec. IV E), we report the
Generalized MMD, which we denote by GMMD2

I
. Moreover, when

we compare the accuracy of the generative models at several snap-
shots (see Secs. IV B–IV D), we report the average of the Generalized

MMD across all such snapshots, which we denote by ˜GMMD2
I

.

B. Low-dimensional comparison

We begin by comparing the speed and accuracy of D-PPMM
with both the standard RQ-NSF and Reduced RQ-NSF architectures
conditioned on time. Specifically, we will consider inference sample

path data {X(tj)}M

j=1 arising from the Van der Pol oscillator (d = 2),
an OU-process (d = 3), and the Lorenz-96 system (d = 4); see Sec.
A. For these experiments, the terminal time of the Lorenz-96 system
is taken as T = 5. Given that the problem of interpolation is highly
application-dependent, we will first be concerned with quantifying
the speed and accuracy of these frameworks as generative models
exactly at the measurement times {tj}M

j=1
.

Figure 2 shows an initial qualitative comparison between
D-PPMM and a time-conditioned Reduced RQ-NSF, in which both
models were permitted to train for exactly the same amount of wall-
clock time. This was achieved by choosing a convergence tolerance
α > 0, recording the wall-clock time tα after which D-PPMM fin-
ishes training, and then training a time-conditioned RQ-NSF for
exactly the same amount of time tα . Throughout our comparisons,
we do not track the time during which the RQ-NSF framework
partitions the training set into mini-batches. In Fig. 2, we see for
each test that D-PPMM produces new samples, which appear more
representative of the original dynamics and visually have smaller

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-8

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 2. Low-dimensional qualitative comparison. We show samples from the D-PPMM and time-conditioned Reduced RQ-NSF generative models in which both models are
permitted the same amount of wall-clock training time (< 10 s). The coloring shows time-evolution, with blue indicating t = 0 and red indicating t = T .

variance than the samples of the Reduced RQ-NSF. For the Van der
Pol oscillator and Lorenz-96 system, D-PPMM uses B = 500 and
L = 0.1. For the OU-process, D-PPMM uses B = 2000 and L = 0.1.
The RQ-NSFs use a mini-batch size of 100, with the remaining
hyperparameter choices detailed in Sec. B.

In Fig. 3, we quantitatively compare the efficiency and accuracy
of D-PPMM, the time-conditioned RQ-NSF, and time-conditioned
Reduced RQ-NSF frameworks. Since the time to compute the MMD
is quadratic in the number of samples N = 104, the error we use
in Fig. 3 is based on the linear-MMD approximation to the true

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-9

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 3. Low-dimensional convergence comparison. The convergence behavior of D-PPMM and the time-conditioned RQ-NSFs as generative models at the observed
measurement times for low-dimensional dynamical systems.

MMD. In Fig. 3, we find that D-PPMM consistently converges faster
and with smaller error than both time-conditioned RQ-NSF frame-
works. The hyperparameters used to train the generative models are
the same as in Fig. 2. To account for the randomness during the
training, testing, and error quantification processes, we train each
model 10 times with different random seeds and visualize both the
mean testing error and the standard deviation over each set of trials
for a fixed training time.

C. High-dimensional comparison

We next turn to the high-dimensional setting and consider
both the OU-process and Lorenz-96 system with d = 10, 20, and
30. For these experiments, we set the final time T = 3.5 for the
Lorenz-96 system. Conducting a similar convergence analysis as
in Fig. 3, we find in Fig. 4 that D-PPMM remains competitive
with the time-conditioned RQ-NSF in the high-dimensional setting.

FIG. 4. High dimensional convergence comparison. We show the convergence behavior of D-PPMM and the time-conditioned RQ-NSFs for the Lorenz-96 system and
OU-process with d ∈ {10, 20, 30} with N = 104. Each model is trained 10 times with different random seeds for each training time shown. The error is computed according
to the linear-MMD approximation.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-10

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Fish schooling convergence comparison. Error comparison between D-PPMM and the time-conditioned RQ-NSFs at the held-out snapshots S2 as the training time
is varied.

We observe that in these examples, the performances of the time-
conditioned RQ-NSFs start to catch up with those from D-PPMM
as the dimension increases.

We remark that the convergence of the D-PPMM algorithm
will remain independent of the dimension d only if the underlying
density changes along a fixed number of directions as d increases.
Due to the d-dimensional Brownian noise used in the experiments

in Fig. 4, as well as the fact that the first optimal map we learn
is from a d-dimensional Gaussian, we do not expect the conver-
gence of D-PPMM to be dimension independent. In situations when
each component of the state vector of the underlying ODE/SDE
evolves independently, such as the OU-process, it is possible to
decompose the pushforward map along d-directions, corresponding
to the standard Euclidean basis vectors, which can be learned in

FIG. 6. Fish schooling sample comparison. Samples generated by D-PPMM using cubic transport spline interpolation and the conditioned RQ-NSF at the held-out snapshots
S2. While D-PPMM trained for less than 1 s, the RQ-NSF was permitted 1200 s of training time.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-11

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

parallel without the use of SAVE. This approach relies on prior
knowledge about the functional form of the underlying dynamics,
and we do not consider this case here.

D. Fish schooling dataset

Having studied D-PPMM for synthetic stochastic processes
in Secs. IV B and IV C, we now consider its application
to real-world datasets originating from biological applications.
Moreover, instead of comparing D-PPMM and the conditioned
RQ-NSF at the observed measurement times, as in Secs. IV B
and IV C, we will now examine their interpolation capabilities.
Recall that D-PPMM can interpolate densities using the transport
splines algorithm (see Sec. III A 2), whereas the conditional normal-
izing flow can simply be evaluated at the desired interpolation time
(see Sec. III B). We begin by studying a dataset of fish schooling
behavior.40 It features trajectories of 300 golden shiners in a rect-
angular water tank and contains snapshot data, which records the
position (xi, yi) ∈ R2 of the shiners, sampled at 30 Hz frequency.
We consider the first 2301 snapshots of the dataset in our compari-
son. We also note that the recorded sample size varies per snapshot
based on which fish are detectable by the tracking software used.40

Thus, it is particularly advantageous that PPMM can be used to
learn OT maps between distributions with different sample sizes

TABLE II. Quantitative comparison of D-PPMM and the conditioned RQ-NSF at the

held-out snapshots S2. The average and standard deviation of the errors are com-

puted over ten different simulations while holding the same training seed fixed. The

boldface values are used to highlight the experiments which either used the least

amount of training time or achieved the lowest error during testing.

Method Training time (s) ˜GMMD2
I

(×10−3)

D-PPMM 0.81 13.51 ± 4.35
Reduced RQ-NSF 0.81 319.25 ± 5.49
RQ-NSF 1200 8.76 ± 0.85

(see Sec. II A). Given the sparsity of observations in this particu-
lar dataset, we also find it useful to manually select a relatively large
bandwidth when performing the KDE for the 1D projected samples
(see Sec. II B).

To study the effectiveness of interpolation with D-PPMM and
the conditioned RQ-NSF, we construct the generative models only
from snapshots with indices in S1 := {100j : 0 ≤ j ≤ 23} and leave
out all other data (note that for this example we index our data
starting with 0, rather than 1). This effectively reduces the sam-
pling rate from 30 to 0.3 Hz. We then compare the models based
on their success at inferring the distribution of golden shiners at the

FIG. 7. Embryoid body dataset interpolation comparison. Top row: embryoid body training and testing datasets. Bottom left: Transport splines that D-PPMMuses to interpolate
the left-out snapshot. Bottom right: interpolation comparison of the third snapshot using D-PPMM with cubic transport spline interpolation and a time-conditioned RQ-NSF.
We show results for 1.70 and 1200 s of wall-clock training time. (a) Inference data; the third snapshot is left out of the training set for testing. (b) D-PPMM transport splines.
(c) Interpolation results for D-PPMM and RQ-NSFs with various training times.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-12

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

snapshots with indices in S2 := {50, 550, 1050, 1550, 2050}. In Fig. 5,
we study the initial convergence behavior of D-PPMM and the
conditioned RQ-NSF when inferring the distribution of shin-
ers at the interpolation snapshots S2. While D-PPMM converges
almost instantly, both normalizing flow frameworks make minimal
progress during the same training time. These results are consis-
tent with the rapid convergence of D-PPMM displayed in Fig. 3. For
the experiment in Fig. 5, D-PPMM uses a bandwidth of 7.5 × 10−2,
B = 75, and L = 0.25, and the RQ-NSFs use a mini-batch size of 46.
Figure 5 shows the mean and standard deviation of each model’s
error after training 10 times with different random seeds.

While Fig. 5 shows that D-PPMM with transport spline
interpolation exhibits rapid initial convergence compared to the
conditioned RQ-NSF models, it is also desirable to compare the
accuracy of its interpolation with a conditional flow that has been
trained for considerably longer than one second. Toward this, in
Fig. 6, we compare the output of the D-PPMM interpolation with a
conditioned RQ-NSF which was trained for 1200 s wall-clock time.
Note that in Fig. 6, we use the generative models to produce approx-
imately 10× as many samples as were available during training. For
this comparison, the hyperparameters of the models are the same as
in Fig. 5. Based on the results in Table II, the use of RQ-NSF results
in more accurate interpolation for this example but also requires sig-
nificantly more training time. On the other hand, D-PPMM can still
produce reasonable interpolants with several orders of magnitude
less training time (about 1/1500 of what the RQ-NSF required).

E. Embryoid body dataset

Next, we study cellular trajectories from an embryoid body
dataset.41 We remark that this embryoid dataset is used as an exam-
ple in Refs. 26, Figs. 7 and 8. The dataset features five evenly spaced
snapshots of a single cell RNA sequencing over a 27-day period with
approximately 3 × 104 cells in total. We access a pre-processed ver-
sion of the dataset from Ref. 26, which filters out rare genes and dead
cells. This dataset contains approximately 1.6 × 104 cells and is pro-
jected onto its first 5 principal components. The time evolution of
these samples is shown in the top row of Fig. 7. Similar to Ref. 26,
we leave the third snapshot out from training and attempt to infer it
from the remaining four snapshots.

The samples generated by D-PPMM and the conditioned
RQ-NSF are shown in the bottom row of Fig. 7. Note that for
this example, D-PPMM finished training with a convergence toler-
ance α = 10−5, B = 500, and L = 0.1 after 1.70 s. For comparison,

TABLE III. Quantitative comparison of D-PPMM and the conditioned RQ-NSF at the

held-out snapshot 3. The average and standard deviation of the error are computed

over 10 generations with the same training seed. The boldface values are used to high-

light the experiments which either used the least amount of training time or achieved

the lowest error during testing.

Method Training time (s) GMMD2
I

( × 10−3)

D-PPMM 1.70 24.97 ± 1.26
Reduced RQ-NSF 1.70 54.99 ± 2.28
RQ-NSF 1200 24.14 ± 1.04

we show the progress that the Reduced RQ-NSF makes after the
same amount of time, as well as the samples of an RQ-NSF, which
has been allotted 1200 s of training time. For this experiment, the
RQ-NSFs use a mini-batch size of 92 samples. We note that in
this case, the time-conditioned RQ-NSF converged with comparable
error with D-PPMM with the transport spline interpolation, but that
D-PPMM required several orders of magnitude less training time
(about 1/700 of what the RQ-NSF required) (see Table III).

V. CONCLUSIONS

We have introduced D-PPMM, which constructs a genera-
tive model of the sample paths of an evolving density by coupling
observed snapshots via OTMs and subsequently applying transport
spline interpolation. Though the concept of joining samples from
successive snapshots via OTMs is not new, we have shown that
the proposed approach is a computationally practical option that
can circumvent the large neural network architectures associated
with many popular generative models of dynamical systems. Specifi-
cally, we have conducted a thorough comparison of the convergence
behavior of D-PPMM with state-of-the-art RQ-NSFs conditioned
on time. In many of the examples we studied, D-PPMM was more
efficient and accurate than the time-conditioned RQ-NSFs. As the
dimension d was increased, the difference in performance between
the generative models became less noticeable, but D-PPMM still
remained competitive. We remark that in our computations in
Sec. IV, we did not parallelize the training procedure for D-PPMM,
but that doing so may lead to even faster performance. More
specifically, the computation of the optimal map between two suc-
cessive snapshots does not affect the computation of the optimal
map between two different successive snapshots. Thus, the training
for-loop in Algorithm 2 naturally lends itself to parallelization.

While we have shown that the D-PPMM method is competi-
tive with the conditional normalizing flow in several settings, there
are also situations in which the use of the normalizing flow may be
preferable. In particular, D-PPMM can suffer from error accumu-
lation when a large number of snapshots are considered, whereas
the normalizing flow does not encounter this problem (see Fig. 1).
Furthermore, the normalizing flow can be trained on irregularly
sampled data, while D-PPMM is expected to struggle when there
are relatively few samples at a given observation time. Lastly, the
normalizing flow offers additional flexibility for modeling condi-
tional probabilities, as one can use the statistics of previous timesteps
as conditioning factors and the sampling time itself to model the
density at future timesteps. This feature is expected to be helpful
when one wishes to predict the dynamics of a stochastic process
rather than interpolate between known measurement times, as in
Ref. 12. Future work may focus on extending D-PPMM to remain
competitive with the normalizing flow in these settings.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Comput-
ing Research (ASCR), under Contract No. DEAC02–06CH11357,
at Argonne National Laboratory. We also acknowledge funding
support from ASCR for DOE-FOA-2493, “Data-intensive scientific

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-13

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

machine learning.” This research was supported, in part, by an
appointment with the National Science Foundation (NSF) Mathe-
matical Sciences Graduate Internship (MSGI) Program sponsored
by the NSF Division of Mathematical Sciences. This program is
administered by the Oak Ridge Institute for Science and Edu-
cation (ORISE) through an interagency agreement between the
U.S. Department of Energy (DOE) and NSF. ORISE is managed
for DOE by ORAU. All opinions expressed in this paper are the
author’s and do not necessarily reflect the policies and views of NSF,
ORAU/ORISE, or DOE. This paper was supported, in part, by a
fellowship award under Contract No. FA9550-21-F-0003 through
the National Defense Science and Engineering Graduate (NDSEG)
Fellowship Program, sponsored by the Air Force Research Labora-
tory (AFRL), the Office of Naval Research (ONR), and the Army
Research Office (ARO). Y. Yang acknowledges support from Dr.
Max Rössler, the Walter Haefner Foundation, and the ETH Zürich
Foundation.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jonah Botvinick-Greenhouse: Formal analysis (lead); Methodology
(equal); Writing – original draft (lead); Writing – review & editing
(equal). Yunan Yang: Methodology (equal); Writing – original draft
(supporting); Writing – review & editing (equal). Romit Maulik:
Conceptualization (lead); Methodology (equal); Writing – original
draft (supporting); Writing – review & editing (equal).

DATA AVAILABILITY

The data used in Secs. IV B and IV C are available from the
corresponding authors upon reasonable request. The data used in
Sec. IV D are openly available in Oregon State University, Ref. 40,
and the data used in Sec. IV E are openly available in Mendeley Data,
Refs. 41 and 26.

REFERENCES
1A. Golightly and D. J. Wilkinson, “Markov chain Monte Carlo algorithms for
SDE parameter estimation,” in Learning and Inference for Computational Systems
Biology (MIT Press, 2010), pp. 253–276.
2I. S. Mbalawata, S. Särkkä, and H. Haario, “Parameter estimation in stochastic
differential equations with Markov chain Monte Carlo and non-linear Kalman
filtering,” Comput. Stat. 28(3), 1195–1223 (2013).
3J. Nygaard Nielsen, H. Madsen, and P. C. Young, “Parameter estimation in
stochastic differential equations: An overview,” Annu. Rev. Control 24, 83–94
(2000).
4X. Yang, Y. Liu, and G.-K. Park, “Parameter estimation of uncertain differential
equation with application to financial market,” Chaos Soliton. Fract. 139, 110026
(2020).
5J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” in
Advances in Neural Information Processing Systems (Curran Associates, 2019),
Vol. 32.
6P. Kidger, J. Foster, X. Li, and T. J. Lyons, “Neural SDEs as infinite-
dimensional GANS,” in International Conference on Machine Learning (PMLR,
2021), pp. 5453–5463.

7X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “Neural SDE: Stabilizing
neural ODE networks with stochastic noise,” arXiv:1906.02355 (2019).
8T. Salimans, D. Kingma, and M. Welling, “Markov chain Monte-Carlo and
variational inference: Bridging the gap,” in International Conference on Machine
Learning (PMLR, 2015), pp. 1218–1226.
9G.-J. Both and R. Kusters, “Temporal normalizing flows,” arXiv:1912.09092
(2019).
10X. Feng, L. Zeng, and T. Zhou, “Solving time dependent Fokker-Planck equa-
tions via temporal normalizing flow,” arXiv:2112.14012 (2021).
11Y. Lu, R. Maulik, T. Gao, F. Dietrich, I. G. Kevrekidis, and J. Duan, “Learning the
temporal evolution of multivariate densities via normalizing flows,” Chaos 32(3),
033121 (2022).
12K. Rasul, A.-S. Sheikh, I. Schuster, U. M. Bergmann, and R. Vollgraf, “Multi-
variate probabilistic time series forecasting via conditioned normalizing flows,” in
International Conference on Learning Representations (ICLR, 2021).
13C. Schöller and A. Knoll, “Flomo: Tractable motion prediction with normaliz-
ing flows,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2021), pp. 7977–7984.
14I. Kobyzev, S. J. D. Prince, and M. A. Brubaker, “Normalizing flows: An intro-
duction and review of current methods,” IEEE Trans. Pattern Anal. Mach. Intell.
43(11), 3964–3979 (2020).
15R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Advances in Neural Information Processing
Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (Curran Associates, Inc., 2018), Vol. 31.
16R. Deng, M. A. Brubaker, G. Mori, and A. Lehrmann, “Continuous latent
process flows,” in Advances in Neural Information Processing Systems, edited
by A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (Curran
Associates, 2021).
17C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learning likelihoods
with conditional normalizing flows,” arXiv:1912.00042 (2019).
18I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM
63(11), 139–144 (2020).
19M. Wiese, R. Knobloch, R. Korn, and P. Kretschmer, “Quant GANS: Deep
generation of financial time series,” Quant. Finance 20(9), 1419–1440 (2020).
20L. Yang, D. Zhang, and G. Em Karniadakis, “Physics-informed generative
adversarial networks for stochastic differential equations,” SIAM J. Sci. Comput.
42(1), A292–A317 (2020).
21Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,
“Score-based generative modeling through stochastic differential equations,”
arXiv:2011.13456 (2020).
22C. Villani, Optimal Transport: Old and New (Springer, 2009), Vol. 338.
23J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” J. Am. Stat.
Assoc. 76(376), 817–823 (1981).
24J.-D. Benamou, T. O. Gallouët, and F.-X. Vialard, “Second-order models for
optimal transport and cubic splines on the Wasserstein space,” Found. Comput.
Math. 19, 1113–1143 (2019).
25S. Chewi, J. Clancy, T. L. Gouic, P. Rigollet, G. Stepaniants, and A. J. Stromme,
“Fast and smooth interpolation on Wasserstein space,” in International Confer-
ence on Artificial Intelligence and Statistics (PMLR, 2021), pp. 3061–3069.
26A. Tong, J. Huang, G. Wolf, D. van Dijk, and S. Krishnaswamy, “Trajecto-
rynet: A dynamic optimal transport network for modeling cellular dynamics,”
in International Conference on Machine Learning (PMLR, 2020), pp. 9526–9536.
27C. Meng, Y. Ke, J. Zhang, M. Zhang, W. Zhong, and P. Ma, “Large-scale
optimal transport map estimation using projection pursuit,” Advances in Neural
Information Processing Systems (Curran Associates, 2019), Vol. 32.
28R. Dennis Cook, “SAVE: A method for dimension reduction and graph-
ics in regression,” Commun. Stat. Theory Methods 29(9–10), 2109–2121
(2000).
29C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline flows,”
Advances in Neural Information Processing Systems (Curran Associates, 2019),
Vol. 32.
30M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversar-
ial networks,” in International Conference on Machine Learning (PMLR, 2017),
pp. 214–223.

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-14

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha
https://doi.org/10.1007/s00180-012-0352-y
https://doi.org/10.1016/S1367-5788(00)90017-8
https://doi.org/10.1016/j.chaos.2020.110026
http://arxiv.org/abs/arXiv:1906.02355
http://arxiv.org/abs/arXiv:1912.09092
http://arxiv.org/abs/arXiv:2112.14012
https://doi.org/10.1063/5.0065093
https://doi.org/10.1109/TPAMI.2020.2992934
http://arxiv.org/abs/arXiv:1912.00042
https://doi.org/10.1145/3422622
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.1137/18M1225409
http://arxiv.org/abs/arXiv:2011.13456
https://doi.org/10.1080/01621459.1981.10477729
https://doi.org/10.1007/s10208-019-09425-z
https://doi.org/10.1080/03610920008832598


Chaos ARTICLE pubs.aip.org/aip/cha

31L. Rout, A. Korotin, and E. Burnaev, “Generative modeling with optimal
transport maps,” arXiv:2110.02999 (2021).
32G. Peyré and M. Cuturi, “Computational optimal transport: With applications
to data science,” Found. Trends Mach. Learn. 11(5–6), 355–607 (2019).
33T. Odland (2018). “tommyod/KDEpy: Kernel Density Estimation in Python,”
Version v0.9.10. Zenodo. https://doi.org/10.5281/zenodo.2392268
34D. W. Scott, “Multivariate density estimation and visualization,” in Handbook
of Computational Statistics: Concepts and Methods (Springer Berlin, Heidelberg,
2012), pp. 549–569.
35Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation via
diffusion,” Ann. Stat. 38(5), 2916–2957 (2010).
36C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios (2020). “nflows:
Normalizing flows in PyTorch,” version v0.14. Zenodo. https://doi.org/10.5281/
zenodo.4296287

37G. A. Pavliotis, Stochastic Processes and Applications (Springer New York, New
York, 2014).
38A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” J. Mach. Learn. Res. 13(25), 723–773 (2012).
39K. Fukumizu, A. Gretton, G. Lanckriet, B. Schölkopf, and B. K. Sriperum-
budur, “Kernel choice and classifiability for RKHS embeddings of probability
distributions,” in Advances in Neural Information Processing Systems, edited by
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (Curran
Associates, Inc., 2009), Vol. 22.
40Y. Katz, K. Tunstrøm, C. Ioannou, C. Huepe, and I. Couzin (2021). “Fish
Schooling Data Subset,” Dataset. Oregon State University. https://doi.org/10.7267/
zk51vq07c
41K. Moon (2018). “Embryoid Body data for PHATE,” Mendeley Data, V1,
https://doi.org/10.17632/v6n743h5ng.1

Chaos 33, 103108 (2023); doi: 10.1063/5.0155783 33, 103108-15

Published under an exclusive license by AIP Publishing

 21 February 2024 16:47:35

https://pubs.aip.org/aip/cha
http://arxiv.org/abs/arXiv:2110.02999
https://doi.org/10.1561/2200000073
https://doi.org/10.5281/zenodo.2392268
https://doi.org/10.1214/10-AOS799
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.7267/zk51vq07c
https://doi.org/10.17632/v6n743h5ng.1

