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Abstract

We derive an adjoint method for the Direct Simulation Monte Carlo (DSMC) method for the
spatially homogeneous Boltzmann equation with a general collision law. This generalizes our
previous results in [Caflisch, R., Silantyev, D. and Yang, Y., 2021. Journal of Computational
Physics, 439, p.110404], which was restricted to the case of Maxwell molecules, for which
the collision rate is constant. The main difficulty in generalizing the previous results is
that a rejection sampling step is required in the DSMC algorithm in order to handle the
variable collision rate. We find a new term corresponding to the so-called score function in
the adjoint equation and a new adjoint Jacobian matrix capturing the dependence of the
collision parameter on the velocities. The new formula works for a much more general class
of collision models.

1. Introduction

Kinetic equations have gained great popularity in the past three decades as modeling tools
beyond their classical application regime of statistical physics [10, 20, 8]. Evolution-type
equations for the statistical function of the car, human, or animal positions in a framework
similar to the kinetic theory of gases have been widely used to model the dynamics of traffic,
human crowds, and swarms [1]. In particular, the Boltzmann equation, mostly known to
model rarefied gas, has been studied as the energy-transport model for semiconductors [22, 6],
financial Brownian motion [14], wealth distribution [21], and sea ice dynamics [11].

Due to the rise in computational power and the capability to collect an enormous amount
of data, data-driven modeling has become a practical mainstream approach. An essential
component of data-driven modeling is optimization, where the physical or nonphysical model
parameters are regarded as the optimizer of an objective function that depends on the so-
lution of the forward kinetic model [2, 12]. There is usually no explicit formula for the
dependence between the model parameter and the solution to the Boltzmann equation [3].
Moreover, the large dimensionality of the unknown parameter makes it impractical to per-
form a global search to solve the corresponding optimization problem. Due to these two major
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challenges, one often turns to gradient-based optimization algorithms to perform large-scale
model parameter calibration. A computationally efficient method to compute the gradient
is thus essential, as iterative optimization algorithms such as gradient descent may require
hundreds of gradient evaluations in a large-scale optimization task.

In an earlier work [9], we investigated the spatially homogeneous Boltzmann equation
constrained optimization problems and developed Monte Carlo algorithms to compute the
gradient based on the two common approaches in the context of PDE-constrained optimiza-
tion: optimize-then-discretize (OTD) and discretize-then-optimize (DTO). Since the Boltz-
mann equation is an integro-differential equation, so is the corresponding adjoint equation.
Obtaining the gradient based on the OTD approach requires numerical solutions to both
the forward and adjoint integro-differential equations. Although the forward Boltzmann
equation can be solved efficiently by the so-called Direct Simulation Monte Carlo (DSMC)
method [7, 18, 5, 4, 19], solving the adjoint equation using Monte Carlo-type methods re-
quires interpolation in the three-dimensional velocity space at each time step [9]. As a more
efficient alternative, the DTO approach computes the gradient by deriving the adjoint of the
Monte Carlo discretization for the forward model. This approach gave rise to the so-called
adjoint DSMC method proposed in [9]. One highlight is that the adjoint DSMC method costs
even less than the forward DSMC method since it does not require further sampling by using
the same sampled velocity pairs and collision parameters from the forward DSMC. The idea
of adjoint DSMC was recently extended to a spatially inhomogeneous case in combination
with the density method for topology optimization problems [13].

The framework in [9] is based on the spatially homogeneous Boltzmann equation for the
Maxwell molecules. That is, the collision kernel in the Boltzmann equation is a constant. In
this work, we generalize the adjoint DSMC method to apply to more general collision models
for the Boltzmann equation that have both velocity and angle dependence. The forward
DSMC method typically uses the rejection sampling method (also known as the acceptance-
rejection method) for collision kernels with velocity dependence to draw velocity pairs and
the collision scattering angle from a general collision kernel. As the discrete adjoint of the
forward DSMC algorithm, the adjoint DSMC will also be modified to reflect the rejection
sampling process. Our new generalized adjoint DSMC method is based on the Monte Carlo
gradient reparameterization coupled with the rejection sampling algorithms [17, 16]. For
collision models with angle dependence, the Jacobian matrix of the post-collision velocities
with respect to the pre-collision velocities is also different from the case where the scattering
angle is uniformly distributed. Combining the generalization in these two directions, the
resulting back-propagation rule for the adjoint particles is a slight modification compared to
the case in [9] for the Maxwell molecules.

We can obtain the generalized adjoint DSMC algorithm through two different derivation
approaches with the same final result. One is based on the direct approach by differentiating
the objective function directly, and the discrete adjoint variable is interpreted as an influence
function, which is the derivative with respect to the conditional expectation. The second
one is a Lagrangian approach where we impose the forward DSMC collision rules through
Lagrangian multipliers (i.e., the discrete adjoint variables) and thus treat velocity particles at
all times to be independent. The Karush–Kuhn–Tucker (KKT) conditions lead to the same
gradient formulation and adjoint equations as the direct approach. The value of the two
derivations is that the direct approach shows the adjoint variable is the influence function,
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while the Lagrangian approach should be easier to generalize to other situations.
The derivation of the adjoint equations for collision kernels that depend on the relative

velocity requires a modification of the DTO approach, and the resulting method is a mixture
of DTO and OTD. As discussed in Section 3.1.4 and Section 5, the velocity derivative
(an optimization step) is applied to the expectation over the rejection sampling step, and
then sampling (i.e., choice of the relevant random variables) for the rejection sampling (a
discretization step) is performed afterward. For all other steps of the method, the DTO
approach is followed since discretization is performed before differentiation.

The rest of the paper is organized as follows. We first present some essential background
in Section 2 where we briefly review the spatially homogeneous Boltzmann equation with
a general collision kernel and the DSMC method with provable convergence for solving
such Boltzmann equations. In Section 3, two complementary approaches to deriving the
adjoint DSMC method are presented: a direct optimization approach, in Section 3.1 and an
augmented Lagrangian approach in Section 3.2. The direct approach is easier to derive and to
understand; while the Lagrangian approach is more general to apply to other applications.
We then present the adjoint Jacobian matrix calculation for a common form of collision
kernel in Section 3.3. It is followed by a discussion in Section 3.4 on two special cases
of the collision kernel where the adjoint DSMC algorithm could be further simplified. We
show two numerical examples in Section 4 for the hard sphere collision models, one without
dependence on the scattering angle and one with the dependence. We demonstrate that the
adjoint DSMC method computes the gradient accurately up to the standard Monte Carlo
error. Conclusion follows in Section 5.

2. Background

In this section, we briefly review the spatially homogeneous Boltzmann equation and the
DSMC method for a general collision kernel.

2.1. The Spatially Homogeneous Boltzmann Equation with a General Collision Kernel

Consider the spatially homogeneous Boltzmann equation

∂f

∂t
= Q(f, f). (1)

The nonlinear collision operator Q(f, f), which describes the binary collisions among parti-
cles, is defined as

Q(f, f) =

ˆ
R3

ˆ
S2

q(v − v1, σ)(f(v
′
1)f(v

′)− f(v1)f(v))dσdv1,

in which (v′, v′1) represent the post-collisional velocities associated with the pre-collisional
velocities (v, v1), q ≥ 0, and the σ integral is over the surface of the unit sphere S2.

By conserving the momentum v + v1 and the energy v2 + v21, we have

v′ = 1/2(v + v1) + 1/2|v − v1|σ,
v′1 = 1/2(v + v1)− 1/2|v − v1|σ,

(2)
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where σ ∈ S2 is a collision parameter. We will hereafter use the shorthand notation

(f, f1, f
′, f ′

1) = (f(v), f(v1), f(v
′), f(v′1)),

(f̂, f̂1, f̂
′, f̂ ′

1) = ρ−1(f(v), f(v1), f(v
′), f(v′1))

for the values of f in the Boltzmann collision operator Q, as well as the normalized densities
f̂ with ρ =

´
f(v)dv and

´
f̂(v)dv = 1.

Physical symmetries imply that

q(v − v1, σ) = q̃(|v − v1|, θ) (3)

where cos θ = σ · α with α = v−v1
|v−v1| and σ =

v′−v′1
|v′−v′1|

=
v′−v′1
|v−v1| . In [9], we rewrote (2), in terms

of operators, as (
v′

v′1

)
= A(σ, α)

(
v
v1

)
,

(
v
v1

)
= B(σ, α)

(
v′

v′1

)
, (4)

where

A(σ, α) =
1

2

(
I + σαT I − σαT

I − σαT I + σαT

)
, B(σ, α) =

1

2

(
I + ασT I − ασT

I − ασT I + ασT

)
, (5)

where I is the identity matrix in R3. Note that B = AT = A−1, showing the involutive
nature of the collision. We also define the matrix C ∈ R6 as the derivative of the collision
outcome (v′, v′1) with respect to the incoming velocities (v, v1), i.e.,

C(σ, α) =
∂(v′, v′1)

∂(v, v1)
. (6)

Our main assumption on the collision kernel q is that there is a positive constant Σ such
that

q(v − v1, σ) ≤ Σ (7)

for all v, v1, and σ. In practice, for example, for the numerical solution by the forward
DSMC method, this is not a restriction because one can take Σ to be the largest value of q
for the discrete set of velocity values.

Although the formulation and analysis presented here are valid for the general collision
model (3), the numerical results will be restricted to collision models of the form

q(v − v1, σ) = q̃(|v − v1|, θ) = Cκ(θ)|v − v1|β. (8)

We refer to [Sec. 1.4][23] for more modeling intuition regarding this type of collision models.
The general model (8) accommodates both the variable hard sphere (VHS) model, when
Cκ(θ) is constant, and the variable soft sphere (VSS) model [15] with angular dependence. As
described in Section 3.4, additional efficiency is achieved by using the separable dependence
of q on |v−v1| and θ; see Algorithm 3. We remark that σ should be considered as a function
of θ, v, v1 as θ = arccos(σ · α) based on (8).
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With the assumption (7), the Boltzmann equation (1) can be further written as

∂f

∂t
=

ˆ
R3

ˆ
S2

(f ′f ′
1 − ff1) q(v − v1, σ)dσdv1

=

¨
f ′f ′

1qdσdv1 −
¨

ff1qdσdv1

=

¨
f ′f ′

1qdσdv1 +

¨
ff1(Σ− q)dσdv1 −

¨
Σff1dσdv1

=

¨
f ′f ′

1qdσdv1 + f

¨
f1(Σ− q)dσdv1 − µf, (9)

where ρ =
´
f1dv1 is the density, A =

´ 2π

0

´ π
0
sin(θ)dθdφ = 4π is the surface area of the unit

sphere, and
µ = AΣρ. (10)

If we multiply both sides of (9) by an arbitrary test function ϕ(v), then divide by ρ and
finally integrate over v, we obtain

∂(
´
ϕf̂dv)

∂t
= ρ

˚
ϕf̂ ′f̂ ′

1qdσdv1dv + ρ

˚
ϕf̂ f̂1(Σ− q)dσdv1dv − µ

ˆ
ϕf̂dv

= ρ

˚
ϕ′f̂ f̂1qdσdv1dv + ρ

˚
ϕf̂ f̂1(Σ− q)dσdv1dv − µ

ˆ
ϕf̂dv,

using dvdv1 = dv′dv′1 and then interchanging notation (v, v1) and (v′, v′1) in the first integral.
If we apply the explicit Euler time integration from tk to tk+1 = tk +∆t, we obtain

ˆ
ϕ f̂(v, tk+1)dv = (1−∆tµ)

ˆ
ϕ f̂(v, tk)dv + (11)

˚
ϕ′ ∆tµΣ−1q f̂(v, tk)f̂1(v1, tk)A

−1dσdv1dv + (12)
˚

ϕ ∆tµΣ−1(Σ− q) f̂(v, tk)f̂1(v1, tk)A
−1dσdv1dv. (13)

Note that for a fixed k, f̂(v, tk) = f(v, tk)/ρ is the probability density of v, and that
f̂(v, tk)f̂1(v1, tk)A

−1 is the probability density over the three variables (v, v1, σ). The three
terms (11), (12) and (13) on the right-hand side of this equation represent the sampling of
the collision process, using rejection sampling, as described in the DSMC algorithm in Sec-
tion 2.2.

2.2. The DSMC Method

In the DSMC method [7, 18, 4], we consider a set of N velocities evolving in discrete time
due to collisions whose distribution can be described by the distribution function f in (1).
We divide time interval [0, T ] into M number of sub-intervals of size ∆t = T/M . At the
k-th time interval, the particle velocities are represented as

Vk = {v1, . . . , vN}(tk),
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Algorithm 1 DSMC Algorithm Using Rejection Sampling for a General Collision Kernel q

1: Compute the initial velocity particles based on the initial condition, V0 = {v01, . . . , v0N}.
2: for k = 0 to M − 1 do
3: Given Vk, choose Nc =

⌈
∆tµN/2

⌉
velocity pairs (iℓ, iℓ1) uniformly without replace-

ment. The remaining N − 2Nc particles do not have a virtual (or real) collision and set
vk+1
i = vki .

4: for ℓ = 1 to Nc do
5: Sample σk

ℓ uniformly over S2.
6: Compute θkℓ = arccos(σk

ℓ · αk
ℓ ) and qkℓ = q(|vkiℓ − vkiℓ1

|, θkℓ ).
7: Draw a random number ξkℓ from the uniform distribution U([0, 1]).
8: if ξkℓ ≤ qkℓ /Σ then
9: Perform real collision between vkiℓ and vkiℓ1

following (2) and obtain (vkiℓ
′
, vkiℓ1

′
).

10: Set (vk+1
iℓ

, vk+1
iℓ1

) = (vkiℓ
′
, vkiℓ1

′
).

11: else
12: The virtual collision is not a real collision. Set (vk+1

iℓ
, vk+1

iℓ1
) = (vkiℓ , v

k
iℓ1
).

13: end if
14: end for
15: end for

and we denote the i-th velocity particle in Vk as vki . The distribution function f(v, t) is then
discretized by the empirical distribution

f(v, tk) ≈
ρ

N

N∑
i=1

δ(v − vki ), k = 0, . . . ,M. (14)

We define the total number of virtual collision pairs Nc =
⌈
∆tµN/2

⌉
. Note that the

number of particles having a virtual collision is 2Nc ≈ ∆tµN . Thus, the probability of
having a virtual collision is ∆tµ, and the probability of not having a virtual collision is
1 − ∆tµ. For each velocity vki ∈ Vk in this algorithm, there are three possible outcomes,
whose probabilities are denoted by hj where j = 1, 2, 3:

Outcome Probability
1. No virtual collision h1 = 1−∆tµ
2. A real collision h2 = ∆tµ qki /Σ
3. A virtual, but not a real, collision h3 = ∆tµ(1− qki /Σ)

Here, qki = q(vki −vki1 , σ
k
i ) where v

k
i1
represents the virtual collision partner of vki and σk

i is the
sampled collision parameter for this pair. Note that the total probability of no real collision
is h1 + h3 = 1−∆tµqki /Σ. Since the hj’s depend on the collision kernel q, we may also view
them each as function of v − v1 and σ. In later sections, we will use the fact that

∂vki (log h1) = 0,

∂vki (log h2) = (qki )
−1∂vki q

k
i ,

∂vki (log h3) = −(Σ− qki )
−1∂vki q

k
i ,
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since ρ, ∆t and Σ are constants. Also note that ∂vki1
(log hj) = −∂vki (log hj).

We can decide whether a particle participates in a virtual collision or not through uni-
form sampling. However, in order to determine whether a selected virtual collision pair
participates in the actual collision or not, we need to use the rejection sampling since the
probability qki is pair-dependent. We further remark that if a virtual velocity pair is rejected
for a real collision (Outcome #2), it is automatically accepted for a virtual but not real col-
lision (Outcome #3). With all the notations defined above, we present the DSMC algorithm
using the rejection sampling in Algorithm 1. The algorithm applies to any general collision
kernel satisfying (7).

Note that the DSMC algorithm is a single sample of the dynamics forN particles following
equations (11)-(13). It is not the same as N samples of a single particle because of the
nonlinearity of these equations. For consistency, the derivation of the adjoint equations also
will employ a single sample of the N -particle dynamics.

3. The Adjoint DSMC Method for a General Kernel

Consider an optimization problem for the spatially homogeneous Boltzmann equation (1).
The initial condition is

f(v, 0) = f0(v;m), (15)

where f0 is the prescribed initial data depending on a parameter m. The goal is to find m
which optimizes the objective function at time t = T ,

J(m) =

ˆ
R3

ϕ(v)f(v, T )dv, (16)

where f(v, T ) is the solution to (1) given the initial condition (15), and thus f(v, T ) depends
on m through the initial condition.

The adjoint DSMC method proposed in [9] is an efficient particle-based method to com-
pute the gradient of the objective function (16) based on the forward DSMC scheme (Sec-
tion 2.2). In this work, we generalize the setup in [9] and extend the algorithm to a general
collision kernel. This section presents two different ways to obtain the general adjoint DSMC
algorithm: a direct approach and a Lagrangian multiplier approach.

3.1. A Direct Approach

In this subsection, we present a direct approach by directly differentiating an equivalent
form of the objective function (16) by rewriting it as the expectation over N particles at
time t = T (see eq. (19) below).

3.1.1. Expectations for DSMC with N Particles

Here we define the expectations for each step of the forward DSMC algorithm. For
simplicity, we assume that the number of particles N is even so that the number of particle
pairs is N/2. If N is odd, there is no real difference since the single unpaired particle
does not get involved in any collisions. The velocities change at a discrete time in the
DSMC Algorithm 1. This involves the following two steps at time tk where k = 0, . . . ,M−1.
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The first step is to randomly (and uniformly) select collision pairs, vki and vki1 , and also
to randomly select collision parameters. The expectation over this step will be denoted as
Ek

p (with “p” signifying collision “parameters” and collision “pairs”).
The second step is to perform collisions at the correct rate, i.e., the given collision kernel,

q(v − vi, σ), using the rejection sampling. This is performed by choosing outcome j with
probability hk

ij = hj(v
k
i − vki1 , σ

k
i ) for j = 1, 2, 3 for this collision pair (vki , v

k
i1
); see Section 2.2

for the definition of {hj}. The expectation for this step will be denoted as Ek
r (with “r” signi-

fying collision “rejection sampling”). Given all velocity particles at tk, the total expectation
over the step from tk to tk+1 is

Ek = Ek
pE

k
r .

The introduction of Ek
r here is motivated by the related work on calculating Monte Carlo

gradients where the samples are drawn using the rejection sampling [16, 17].
Moreover, the expectation operator Ek

r can each be factored into a series of expectations,

Ek
r = Π

N/2
i=1E

k
ri, (17)

in which the expectations Ek
ri is the expectation with respect to the rejection sampling

process applied to a single pair (vki , v
k
i1
). These are “pair-wise” products, since the subscript

i denotes the i-th velocity pair. Note that in these products, the order of expectations does
not matter since their application to a pair (vki , v

k
i1
) does not affect other pairs. We will later

use the factorization of Ek
r in (17). We do not factorize Ek

p since the velocity pairs are drawn
without replacement, so it is not pair-wise i.i.d. process.

We define Ek, Ek
p , E

k
r , E

k
ri as expectations over the independent, uniform random vari-

ables (rather than the physical variables such as the velocity v) used in the DSMC algorithms,
for the selection of particle pairs and collision parameters, as well as for the rejection sampling
step. These expectations assume particle velocities Vk at time tk are known.

3.1.2. Passing Velocity Derivatives Through the Expectations

For an arbitrary test function ϕ, the expectation for the rejection sampling process for a
single pair of velocities (vki , v

k
i1
) can be written as

Ek
ri[ϕ] =

3∑
j=1

hk
ijϕj,

where the random variable ϕ = ϕj with probability hk
ij. Since hk

ij depends on (vki , v
k
i1
), for

both j = 2 and j = 3, the velocity derivative does not commute with Ek
ri, but does commute

with Ek
ri′ for i

′ ̸= i and i′ ̸= i1. We can calculate the velocity derivative as follows:

∂

∂vki
Ek

ri[ϕ] =
3∑

j=1

hk
ij

(
∂

∂vki
ϕj + ϕj

∂

∂vki
log hk

ij

)
= Ek

ri

[
∂

∂vki
ϕ+ ϕ

∂

∂vki
log hk

i

]
.

In the last term, hk
i can be considered as a random variable for the velocity pair (vki , v

k
i1
),

and hk
i = hk

ij with probability hk
ij. Since Ek

r = Π
N/2
i′=1E

k
ri′ and ∂/∂vki commutes with Ek

ri′ for
i′ ̸= i and i′ ̸= i1, it follows that

∂

∂vki
Ek

r [ϕ] = Ek
r

[
∂

∂vki
ϕ+ ϕ

(
∂

∂vki
log hk

i

)]
.
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Because Ek
p also commutes with velocity derivatives, it follows that

∂

∂vki
Ek[ϕ] =

∂

∂vki
Ek

pE
k
r [ϕ] = Ek

[
∂

∂vki
ϕ+ ϕ

(
∂

∂vki
log hk

i

)]
. (18)

3.1.3. Objective Function

We rewrite the objective function (16) at time T = tM as

J = E
[
ϕ̄M
]
, where ϕ̄M =

ρ

N

N∑
i=1

ϕM
i , (19)

where ρ =
´
f(v, T )dv, ϕM

i = ϕ(vMi ) with vMi ∼ f(v, T ) (in which the notation v ∼ f means
that the random variable v is sampled from the distribution function f). Note that (19) is
an average of expectations over the N velocities, rather than a single expectation of v with
respect to a density function f(v, T ) as defined in (16). The expectation E is taken over all
the randomness in the forward DSMC simulation over M time steps.

Next, we denote the conditional average at time tk as

Jk = E
[
ϕ̄M |Vk

]
, (20)

which is the expectation of ϕ̄M for known values of the velocities vki at time tk. Since

E
[
· |Vk

]
= Ek . . . EM−1

[
· |Vk

]
, (21)

we then have
E
[
ϕ̄M |Vk

]
= Ek

[
E
[
ϕ̄M |Vk+1

]
|Vk
]
,

which implies
Jk = Ek

[
Jk+1|Vk

]
, k = 0, . . . ,M − 1. (22)

Note that although the expectations Ek and Ek+1 are independent and commute since the
former is a function of Vk and the latter is a function of Vk+1, their order in (21) is necessary
for the interpretation as a conditional expectation and to relate Vk+1 with Vk.

If we also define
Jk
i = E

[
ϕM
i |Vk

]
, (23)

then by the same reasoning

Jk
i = Ek

[
Jk+1
i |Vk

]
, k = 0, . . . ,M − 1.

Moreover, for a fixed index i = 1, . . . , N , we have the following

Jk
i = E[ϕM

i |Vk] = Ek
pE

k
ri . . . E

M−1
p EM−1

ri [ϕM
i |Vk], k = 0, . . . ,M − 1.

Recall that {Ek
p} are expectations over the choice of collision pairs and parameters, and

{Ek
ri} are the expectations over the rejection sampling at each time step for the i-th particle

as defined in Section 3.1.1. Each probability hk
ij, j = 1, 2, 3, at time tk for particle index i,

depends on vki and its collision partner vki1 at time tk. Thus, for any k,

Jk =
ρ

N

N∑
i=1

Jk
i =

ρ

N

N∑
i=1

E[ϕM
i |Vk] =

ρ

N

N∑
i=1

Ek
pE

k
ri . . . E

M−1
p EM−1

ri [ϕM
i |Vk], (24)
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which is another way to represent (20).
Note that in (17), the index i ranges from 1 to N/2 as we treat (i, i1) as a pair in the

rejection sampling process. In (24), the index for the particle ranges from 1 to N because we
need to treat the i-th and the i1-th particles separately, since the objective function (19) is a
sum of N terms. Thus, in (24), we should understand Ek

pE
k
ri1

= Ek
pE

k
ri if (i, i1) is a collision

pair at time tk where i ranges from 1 to N/2 as in (17).

3.1.4. Influence Function

We introduce the influence function γk
i = γk

i (Vk) defined as

γk
i :=

∂

∂vki
Jk =

∂

∂vki
Ek[Jk+1|Vk] =

ρ

N

N∑
i′=1

∂

∂vki
Ek[Jk+1

i′ |Vk], (25)

where the second equality is a result of (22), and third equation follows (24). After apply-
ing (18), we have

∂

∂vki
Jk
i′ =

∂

∂vki
Ek[Jk+1

i′ |Vk] = Ek

[
∂

∂vki
Jk+1
i′ + Jk+1

i′

(
∂

∂vki
log hk

i′

) ∣∣∣Vk

]
, (26)

for i′ = 1, . . . , N . Note that hk
i′j = hk

i′1j
if (i′, i′1) is a pair at tk, for j = 1, 2, 3. Based on

the forward DSMC algorithm, the probabilities in the rejection sampling step, hk
i′ in {Jk

i′}
do not depend on vki if i′ ̸= i, i1. Thus, the last term in (26) disappears for i′ ̸= i, i1. After
calculating the sum in (25), we have

γk
i = Ek

[
∂

∂vki
Jk+1 +

ρ

N
Jk+1
i

(
∂

∂vki
log hk

i

)
+

ρ

N
Jk+1
i1

(
∂

∂vki
log hk

i

) ∣∣∣Vk

]
, (27)

where (i, i1) is a pair at t = tk in the forward DSMC.
Note that Jk is a function of Vk = {vki } and Jk+1 is a function of Vk+1 = {vk+1

i }. The
only elements in Vk+1 that depend on vki are vk+1

i and vk+1
i1

, which are determined by(
vk+1
i

vk+1
i1

)
= Ck

i

(
vki
vki1

)
, (28)

where the operator Ck
i is one of the following three possible matrices each with probability

hk
ij, j = 1, 2, 3; see (5) for the definition of A(σ, α) and Section 3.1.2 for details about {hk

ij}.

Ck
i =


I, j = 1, (vki , v

k
i1
) does not have a real or virtual collision,

A(σk
i , α

k
i ), j = 2, (vki , v

k
i1
) has a real collision,

I, j = 3, (vki , v
k
i1
) has a virtual, but not a real, collision,

(29)

where I ∈ R6 is the identity matrix. Note that, in (28), vki and vki1 are a collision pair, but

that vk+1
i and vk+1

i1
are not a collision pair.

Furthermore, based on the definition of C in (6), we have

D =

[
∂(v′, v′1)

∂(v, v1)

]⊤
=


I, j = 1,

[C(σ, α)]⊤, j = 2,

I, j = 3.

(30)
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We remark here that A(σ, α) and C(σ, α) may not be the same. We will discuss the concrete
form of D in detail in Section 3.3. It follows that(

∂/∂vki
∂/∂vki1

)
=

∂(vk+1
i , vk+1

i1
)

∂(vki , v
k
i1
)

·
(
∂/∂vk+1

i

∂/∂vk+1
i1

)
= Dk

i

(
∂/∂vk+1

i

∂/∂vk+1
i1

)
, (31)

where Dk
i is the matrix D defined in (30) applied to the pair (vki , v

k
i1
).

Now we can calculate the change in the influence function over a single step from tk to
tk+1. Similar to (27), we get γk

i1
where

γk
i1
= Ek

[
∂

∂vki1
Jk+1 +

ρ

N
Jk+1
i1

(
∂

∂vki1
log hk

i

)
+

ρ

N
Jk+1
i

(
∂

∂vki1
log hk

i

) ∣∣∣Vk

]
. (32)

Combining (27) and (32), and applying (31), we have(
γk
i

γk
i1

)
= Ek

[
Dk

i

(
γk+1
i

γk+1
i1

) ∣∣∣Vk

]
+

ρ

N
Ek

[(
Jk+1
i + Jk+1

i1

)(∂ log hk
i /∂v

k
i

∂ log hk
i /∂v

k
i1

) ∣∣∣Vk

]
. (33)

Again, hk
i in the right-hand side of (33) should be seen as a random variable, and hk

i = hk
ij =

hj with probability hj where {hj} is defined in Section 2.2.
Now we apply sampling to this expectation (33), as in the forward DSMC algorithm,

over a single sample of the dynamics of N discrete particles. We remark that based on (23),
Jk+1
i and Jk+1

i1
become ϕM

i and ϕM
i1

after sampling. Finally, we obtain(
γk
i

γk
i1

)
= Dk

i

(
γk+1
i

γk+1
i1

)
+

ρ

N

(
ϕM
i + ϕM

i1

) ∂ log hk
i

∂vki

(
1
−1

)
, (34)

because ∂
∂vki

log hk
i = − ∂

∂vki1
log hk

i due to the symmetry of elastic binary collision.

Note that the velocity derivative (an optimization step) is applied to the expectation in
(24) and then sampling (a discretization step) is applied to the result in (34). As discussed
in Section 1, this part of the derivation follows the OTD approach. On the other hand,
instead of using a probability density function f as in (16), the expectation in (24) is based
on N discrete velocity particles (using particle discretization). Thus, this part follows the
DTO approach. The derivation here is a combination of both DTO and OTD approaches.

3.1.5. Final Data

The “final data” for γk
i with k = M is simply

γM
i =

∂

∂vMi
JM =

∂

∂vMi
E[ϕ̄M |VM ] =

∂

∂vMi
ϕ̄M =

ρ

N
ϕ′(vMi ). (35)

3.1.6. Resulting Adjoint System

Combining both (34) and (35), the resulting system is

γM
i =

ρ

N
ϕ′(vMi ) (36a)(

γk
i

γk
i1

)
= Dk

i

(
γk+1
i

γk+1
i1

)
+

(
ηki
ηki1

)
for k = 0, . . . ,M − 1 (36b)
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in which ηki is defined as

ηki =



0, if vki does not have a virtual or real collision,

ρ

N

∂ log qki
∂vki

(ϕM
i + ϕM

i1
), if vki has a virtual collision that is a real collision,

ρ

N

∂ log(Σ− qki )

∂vki
(ϕM

i + ϕM
i1
), if vki has a virtual, but not a real, collision.

(37)
This can be used to calculate sensitivities. Assuming the L2 inner product for m, we have

∇mJ = ∇m

(
EV0

[
E
[
ϕ̄M |V0

]])
≈

N∑
i=1

∂v0i
∂m

·
(

∂

∂v0i
E
[
ϕ̄M |V0

])
≈

N∑
i=1

∂v0i
∂m

· γ0
i .

We denote the gradient calculated through the adjoint approach as ∇mJ
AD where

∇mJ
AD =

N∑
i=1

∇mv
0
i · γ0

i . (38)

Note that EV0 denotes the expectation over all elements in V0, and ∀v0i ∈ V0, v0i ∼ f0(v;m),
the initial distribution introduced in (15). The approximation in (38) corresponds to the
so-called pathwise gradient estimator [16, Section 5].

To compute the gradient represented by the last term in (38), we need to “back-propagate”
(36) from t = tM = T all the way to t = t0 = 0. We remark that the only differences be-
tween (36) and the adjoint DSMC algorithm designed for the Maxwell molecules [9] are the
“η” terms in (36b). We summarize the new adjoint DSMC algorithm in Algorithm 2.

Algorithm 2 Solve the Discrete Adjoint DSMC System and Compute the Gradient (38).

1: Given the final-time velocities VM from the forward DSMC, set γM
i = ρ

N
ϕ′(vMi ) for all i.

2: for k = M − 1 to 0 do
3: Given {γk+1

1 , . . . , γk+1
N } from the previous iteration, the collision history and collision

parameters from the forward DSMC process.
4: if vki ∈ Vk did not virtually collide at tk then
5: Set γk

i = γk+1
i .

6: else if vki , v
k
i1
∈ Vk virtually collided at tk then

7: Set

(
γk
i

γk
i1

)
= Dk

i

(
γk+1
i

γk+1
i1

)
+

(
ηki
ηki1

)
, where ηki , η

k
i1
follow (37).

8: end if
9: end for
10: Compute the gradient following (38).

12



3.2. A Lagrangian Approach

In addition to the direct derivation of the adjoint equations described above, it is useful
(as mentioned in the Introduction) to have a “Langrangian” form from which the forward
DSMC and the adjoint equations can be derived. Using the earlier notation Ek in Section 3.1
and the objective function J defined in (19), we can write the Lagrangian J as

J = J +
1

2

M−1∑
k=0

N∑
i=1

Ek

[(
γk+1
i

γk+1
i1

)
·
(
Ck
i

(
vki
vki1

)
−
(
vk+1
i

vk+1
i1

)) ∣∣∣∣ (vkivki1
)]

+

N∑
i=1

Ev̂0i(m)∼f0(v;m)

[
γ0
i ·
(
v̂0i(m)− v0i

)]
. (39)

The “1/2” scaling is to avoid enforcing the collision rule twice. Again, note that vki and vki1
are a collision pair, but that neither (vk+1

i , vk+1
i1

) nor (vMi , vMi1 ) are a collision pair.
In contrast to the direct approach in which the velocities {vki } are chosen according to the

forward DSMC and the {γk
i } are chosen by the adjoint equations, in the Lagrangian approach

described here, the velocities {vki } and the Lagrangian multipliers {γk
i } are considered to be

any random variables. We then derive the forward and adjoint DSMC equations by requiring
that J is stationary with respect to variations in the vki ’s and the γk

i ’s.

3.2.1. Collision Rules and Initial Data

The collision rules are derived from the derivatives of J with respect to γk+1
i and γk+1

i1

for k = 0, . . . ,M − 1. Setting these to zero implies that

Ck
i

(
vki
vki1

)
=

(
vk+1
i

vk+1
i1

)
. (40)

See (29) for the three possible cases of Ck
i , which are the DSMC equations for a non-virtual

collision, a real collision and a virtual, but not real, collision, respectively.
Similarly, setting to zero the derivatives of J with respect to γ0

i implies that

v0i = v̂0i(m),

which is the initial data for the forward DSMC. We assume that v̂0i(m) ∼ f0(v;m).

3.2.2. Parameter m

If we take the derivative of J with respect to the parameter m, we obtain the gradient
based on sampled {v̂0i}:

∂J

∂m
=

∂J
∂m

≈
N∑
i=1

γ0
i ·

∂v̂0i(m)

∂m
. (41)

Note that (41) is the same as the ∇mJ
AD in (38).
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3.2.3. Final Data

For each i, we take the derivative of J with respect to the final velocity particle vMi .
There are three terms in J defined in (39). For the first term J , we consider J ≈ JM =
E[ϕ̄M |VM ] = ρN−1

∑N
i′=1 ϕ(v

M
i′ ) as defined in (19) and (20). For the second term which

enforces the binary collision rule, since the expectation EM−1 does not depend on particle
velocities in VM , we have

∂

∂vMi
EM−1[γM

i · vMi |VM−1] = EM−1[γM
i |VM−1].

The last term in J does not depend on the final-time particles VM , so does not contribute
to the derivative. Summarizing all the terms, we have

∂J
∂vMi

≈ ∂

∂vMi

(
ρN−1

N∑
i′=1

ϕ(vMi′ )− EM−1
[
γM
i · vMi |VM−1

])
= ρN−1ϕ′(vMi )− EM−1

[
γM
i |VM−1

]
≈ ρN−1ϕ′(vMi )− γM

i .

Setting this derivative to 0 implies the final condition γM
i = ρN−1ϕ′(vMi ) as seen in (36a).

3.2.4. Adjoint Equations

The first term J in the Lagrangian is defined as an expectation of ϕM ; see (19). For the
first term J in the Lagrangian, we consider J ≈ Jk = E

[
ϕ̄M |Vk

]
since we are taking the

derivative of J with respect to elements in Vk. That is,

J ≈ Jk = E
[
ϕM |Vk

]
= ρN−1

N∑
i′=1

Ek . . . EM−1[ϕM
i′ ].

Since vki only appears in the terms hk
ij = hj(v

k
i − vki1 , σ

k
i ), j = 1, 2, 3, in Ek (see Section 2.2),

then using the commutator between the derivative and the expectation as in (18), we have

∂vki J ≈ ρN−1

N∑
i′=1

(∂vki E
k)Ek+1 . . . EM−1[ϕM

i′ ]

= ρN−1

N∑
i′=1

Ek . . . EM−1
[
(δi′i + δi′i1)

(
∂vki log h

k
i

)
ϕM
i′

]
= ρN−1Ek . . . EM−1

[
∂vki log h

k
i

(
ϕM
i + ϕM

i1

)]
≈ ρN−1

(
∂vki log h

k
i

)
[ϕM

i + ϕM
i1
], (42)

in which the approximation in the last step is from sampling. The hk
i term in all equations

above except the last one should be considered as a random variable and hk
i = hk

ij with
probability hk

ij, j = 1, 2, 3. We use the final term in (42) as the contribution from J to the
(approximate) optimality condition for J .
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We continue by differentiating the remaining term J − J in (39) to obtain

∂(J − J)

∂vki
= Ek

[(
γk+1
i

γk+1
i1

)
·
{
Ck
i

(
vki
vki1

)
−
(
vk+1
i

vk+1
i1

)}
∂ log hk

i

∂vki

∣∣∣Vk

]
+

Ek

[
D

k

i

(
γk+1
i

γk+1
i1

) ∣∣∣∣Vk

]
− Ek−1

[
γk
i |Vk−1

]
,

≈
(
γk+1
i

γk+1
i1

)
·
{
Ck
i

(
vki
vki1

)
−
(
vk+1
i

vk+1
i1

)}
∂ log hk

i

∂vki
+D

k

i

(
γk+1
i

γk+1
i1

)
− γk

i , (43)

∂(J − J)

∂vki1
= Ek

[(
γk+1
i

γk+1
i1

)
·
{
Ck
i

(
vki
vki1

)
−
(
vk+1
i

vk+1
i1

)}
∂ log hk

i

∂vki1

∣∣∣∣Vk

]
+

Ek

[
Dk

i

(
γk+1
i

γk+1
i1

) ∣∣∣∣Vk

]
− Ek−1

[
γk
i1
|Vk−1

]
≈

(
γk+1
i

γk+1
i1

)
·
{
Ck
i

(
vki
vki1

)
−
(
vk+1
i

vk+1
i1

)}
∂ log hk

i

∂vki1
+Dk

i

(
γk+1
i

γk+1
i1

)
− γk

i1
. (44)

Here, Dk
i =

[
D

k

i

Dk
i

]
. That is, D

k

i , D
k
i ∈ R3×6 are the upper and lower blocks of the matrix

Dk
i defined in (30). Note that the terms in brackets “{ }” are always 0 because of (40).
Finally, we combine (42), (43) and (44), to obtain approximations for ∂J

∂vki
and ∂J

∂vki1
. Setting

them to zero results in equations that are identical to (36); i.e., the Lagrangian approach
confirms the results of the direct approach.

Note that the two derivations of adjoint equations, the first directly from the DSMC
equations (Section 3.1) and the second from a Lagrangian (Section 3.2), are nearly identical
in terms of the details of the calculations and the origin of the score function.

3.3. The Calculation of D in (30)

In the earlier adjoint DSMC derivations, we did not specify the explicit form of the matrix
D in (30), which is denoted as Dk

i when applied to a particular collision pair (vki , v
k
i1
). It

is clear that the matrix is an identity matrix when the velocity particles do not have a real
collision. Thus, we focus on the case j = 2.

Based on the binary collision formula (2), there are two cases when we calculate the
Jacobian matrix C and its adjoint D: (1) σ can be seen to be independent of (v, v1) when
the collision kernel q(v− v1, σ) is angle-independent, and (2) σ depends on (v, v1) otherwise.

Case one – angle-independent kernel: Despite the fact that σ is the unit vector
along the post-collision relative velocity, σ can be regarded as uniformly distributed over S2

as long as the collision kernel q(v − v1, σ) = q̃(|v − v1|, θ) does not depend on the scattering
angle θ. Thus, we can consider σ to be independent of the pre-collision relative velocity α,
and thus independent of (v, v1). If (v, v1) is a real collision pair, based on (4), we have

D = C(σ, α)⊤ =

[
∂(v′, v′1)

∂(v, v1)

]⊤
= B(σ, α), (45)
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where B is defined in (5). This formula was used in [9] where a constant collision kernel was
considered.

Case two – angle-dependent kernel: In this case, we need to consider the dependence
of σ on the pre-collision particle velocities, v and v1, since the distribution of σ is no longer
uniform over the sphere S2, and it depends on α = v−v1

|v−v1| . Going through the calculations

for (6), we have

∂vv
′ =

1

2

(
I + σ α⊤ + |u|∂vσ

)
,

∂v1v
′ =

1

2

(
I − σ α⊤ + |u|∂v1σ

)
,

∂vv
′
1 =

1

2

(
I − σ α⊤ − |u|∂vσ

)
,

∂v1v
′
1 =

1

2

(
I + σ α⊤ − |u|∂v1σ

)
,

where u = v − v1. Note that ∂vσ = ∂uσ = −∂v1σ. Next, we compute ∂vσ and ∂v1σ. Note
that we can also write the collision formula (2), following [24, Sec. 2.2], as

v′ = v + 1/2∆U,

v′1 = v1 − 1/2∆U,

where

∆U =


uxuz√
u2
x+u2

y

− uy |u|√
u2
x+u2

y

ux

uyuz√
u2
x+u2

y

ux|u|√
u2
x+u2

y

uy

−
√

u2
x + u2

y 0 uz


sin θ cosφ
sin θ sinφ
cosφ

− u.

Thus, using the definition of σ, we have

σ =
v′ − v′1
|v′ − v′1|

=
v′ − v′1
|v − v1|

=


uxuz

|u|
√

u2
x+u2

y

− uy√
u2
x+u2

y

ux

|u|
uyuz

|u|
√

u2
x+u2

y

ux√
u2
x+u2

y

uy

|u|

−
√

u2
x+u2

y

|u| 0 uz

|u|


sin θ cosφ
sin θ sinφ
cosφ

 , (46)

which shows the dependence of σ upon v, v1, θ, φ explicitly. For fixed θ and φ, we have

|u|∂uσ = |u|

(
∂e⊤i σ

∂e⊤j u

)
ij

=
[
G1σ G2σ G3σ

]
,

|u| (∂uσ)⊤ =

σ⊤G⊤
1

σ⊤G⊤
2

σ⊤G⊤
3

 = −

σ⊤G1

σ⊤G2

σ⊤G3

 ,

where {ei} is the standard basis in R3, and matrices Gj = −G⊤
j , j = 1, 2, 3, as defined below
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using the notation α = u/|u| = [αx, αy, αz]
⊤.

G1 =


0 αy

α2
x+α2

y

α2
xαz

α2
x+α2

y

− αy

α2
x+α2

y
0 αxαyαz

α2
x+α2

y

− α2
xαz

α2
x+α2

y
−αxαyαz

α2
x+α2

y
0

 =
1

α2
x + α2

y


0 αy α2

xαz

−αy 0 αxαyαz

−α2
xαz −αxαyαz 0

 ,

G2 =



0 − αx

α2
x+α2

y

αxαyαz

α2
x+α2

y

αx

α2
x+α2

y
0

α2
yαz

α2
x+α2

y

−αxαyαz

α2
x+α2

y
− α2

yαz

α2
x+α2

y
0

 =
1

α2
x + α2

y


0 −αx αxαyαz

αx 0 α2
yαz

−αxαyαz −α2
yαz 0

 ,

G3 =


0 0 −αx

0 0 −αy

αx αy 0

 .

We define a tensor Glij where G1ij = G1, G2ij = G2 and G3ij = G3. We will then use
Einstein’s summation convention. The adjoint matrix D in (30) for a real collision pair
becomes

D = [C(σ, α)]⊤ =
1

2

(
I + ασ⊤ I − ασ⊤

I − ασ⊤ I + ασ⊤

)
+

1

2

(
−(σ)iGlij (σ)iGlij

(σ)iGlij −(σ)iGlij

)
= B(σ, α) + B̃(σ, α), (47)

where (σ)i denotes the i-th element of vector σ, and

B̃(σ, α) =
1

2

(
−(σ)iGlij (σ)iGlij

(σ)iGlij −(σ)iGlij

)
. (48)

In order to build B̃(σ, α), we need σ and α, which are already stored in memory during
the forward DSMC for the calculation of B(σ, α) in (5). Therefore, there is no additional
memory requirement.

3.4. Special Cases

In this section, we discuss a few special cases of the collision kernel q(v− v1, σ) that may
result in a variation or simplification with respect to Algorithm 2.

3.4.1. The DSMC and the Adjoint DSMC Methods for a Constant Kernel

For a constant collision kernel q, which is the model for Maxwell molecules, the upper
bound can be taken as Σ = q. Then {hj} in Section 2.2 are all constant, all virtual collisions
are real collisions, and all η terms are 0 in (37). This corresponds to the case studied in [9].
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Algorithm 3 DSMC Algorithm for Collision Kernel of Form (8)

1: Compute the initial velocity particles based on the initial condition, V0 = {v01, . . . , v0N}.
Set Nc =

⌈
N∆tµκ/2

⌉
where µκ = AκΣvρ and M = T/∆t given final time T .

2: for k = 0 to M − 1 do
3: Given Vk, choose Nc virtual collision pairs (iℓ, iℓ1) uniformly without replacement.

The remainingN−2Nc particles do not have a virtual (or real) collision and set vk+1
i = vki .

4: for ℓ = 1 to Nc do
5: Compute uℓ = |vkiℓ − vkiℓ1

|β.
6: Draw a random number ξℓ from the uniform distribution U([0, 1]).
7: if ξℓ ≤ uℓ/Σv then
8: Sample scattering angle θ ∼ Cκ(θ) sin(θ) and azimuthal angle φ ∼ U([0, 2π]).
9: Perform real collision between vkiℓ and vkiℓ1

following (2) and obtain (vkiℓ
′
, vkiℓ1

′
).

10: Set (vk+1
iℓ

, vk+1
iℓ1

) = (vkiℓ
′
, vkiℓ1

′
).

11: else
12: The virtual collision is not a real collision. Set (vk+1

iℓ
, vk+1

iℓ1
) = (vkiℓ , v

k
iℓ1
).

13: end if
14: end for
15: end for

3.4.2. The DSMC and the Adjoint DSMC Methods for Kernel of Type (8)

The DSMC method presented in Algorithm 1 applies to any general collision kernel
q(v − v1, σ) with an upper bound Σ. However, many common collision models for the
Boltzmann equation are of the form (8), for which the collision kernel contains two separate
parts: the relative velocity part |v − v1|β, and the scattering angle-dependent part Cκ(θ).
Given this separation of variables, the DSMC method presented in Algorithm 1 can be
modified to improve sampling efficiency.

In contrast to the upper bound Σ for the entire collision kernel as defined in (7), we define
Σv as the upper bound for the relative velocity part where

|v − v1|β < Σv. (49)

Numerically, the upper bound can be taken as Σv = maxi |vi − vi1 |β where i is the index of
a velocity particle and i1 is its collision partner index [19]. Besides, we define the weighted
surface area

Aκ =

ˆ 2π

0

ˆ π

0

Cκ(θ) sin(θ)dθdφ, (50)

which is different from the unweighted surface area A defined in (10). Correspondingly, we
have a different collision rate µκ = AκΣvρ where the density ρ =

´
fdv. We summarize the

modified DSMC algorithm in Algorithm 3.
Compared with Algorithm 1, there is a major change in Algorithm 3. The collision

scattering angle θ and the azimuthal angle φ are sampled independently and directly instead
of using the rejection sampling. Since θ ∈ R, it is quite efficient to use inverse transform
sampling to sample Cκ(θ) sin(θ).
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Note that Algorithm 3 can be used to sample angle-independent kernels, i.e., q(v−v1, σ) =
|v − v1|β. However, since the scattering and azimuthal angles are sampled uniformly first,
there is a numerical dependence of the resulting σ on u = v − v1 based on eq. (46), despite
that there is no σ-dependence in the collision kernel itself. Technically, the adjoint Jacobian
matrix D should follow the formulation (47) in the corresponding adjoint DSMC Algorithm 2

instead of (45). Nevertheless, we observe that the additional term B̃ in (47) can be dropped

due to an averaging effect, reducing it to (45). The resulting gradient is not affected by B̃.
We will further demonstrate it numerically in Section 4.1.

On the other hand, Algorithm 1 does not require sampling the scattering angle and the
azimuthal angle first for a general angle-dependent kernel q(v − v1, σ). It samples (v, v1, σ)
independently before going through the rejection sampling step. Although σ is originally
sampled independent of (v, v1), its acceptance probability in the rejection sampling, q(v −
v1, σ), enforces the dependence of the final accepted σ on (v, v1). As a result, the adjoint

Jacobian matrix D in the corresponding adjoint DSMC Algorithm 2 should still have the B̃
term defined in (48) when the forward DSMC method follows Algorithm 1.

4. Numerical Results

In this section, we numerically test the adjoint DSMC method described in Algorithm 2
by computing the gradient using formula (38) for the objective function discussed in Equa-
tions (16) and (19),

J(m) =

ˆ
R3

ϕ(v)f(v, T )dv ≈ ϕ̄M =
ρ

N

N∑
i=1

ϕ(vMi ),

evaluated at the final time t = T , with respect to the parameter m in the initial conditions
f0(v;m) for the general collision kernel in the form of (8),

q(v − v1, σ) = Cκ(θ)|v − v1|β =
1 + κ

2κ+2πϵ
(1 + cos θ)κ|v − v1|β, cos θ = σ · v − v1

|v − v1|
. (51)

We choose this particular form of Cκ(θ) in (51) such that Aκ = 1/ϵ as defined in (50),
where ϵ controls the amount of collisions per unit of time. We first consider collision kernels
with only velocity dependence (κ = 0 and β = {0, 1, 2}) and next we consider collision
kernels with both velocity and angle dependence (κ = {1, 2, 5} and β = 1). We also assume
that ρ(t) =

´
R3 f(v, t)dv = 1 (which is conserved throughout the evolution by the forward

DSMC Algorithms 1 and 3), and thus µκ = AκΣvρ = Σv/ϵ.
Since we do not have an exact solution to the Boltzmann equation (1) under this general

collision kernel, we compare the gradient ∇mJ
AD computed by the adjoint DSMC method

(via Algorithm 2 and eq. (38)) with the one computed by the central finite difference method,

∇mJ
FD(m) ≈ J(m+∆m)− J(m−∆m)

2∆m
, (52)

where both J(m + ∆m) and J(m − ∆m) are computed using forward DSMC simulations
with the same random seed. The random seed is used to initialize a pseudorandom number
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generator for sampling steps in the forward DSMC algorithms (see Algorithms 1 and 3). We
fix the random seed in (52) to reduce the random error in approximating ∇mJ

FD. We will
also use the average value of ∇mJ

FD from multiple runs (under different random seeds) to
further reduce the variance in ∇mJ

FD.
We are interested in the error between the two gradients defined as

∣∣∇mJ
AD −∇mJ

FD
∣∣,

and studying its convergence as the number of particles N increases in the empirical distri-
bution (14) as a discretization for the distribution function f in the Boltzmann equation (1).
This total error has several contributions: the random error from particle discretization in
both ∇mJ

AD and ∇mJ
FD, and the finite difference error in ∇mJ

FD. Thus, when we study
the convergence of the total error with N increasing, we expect the total error first to de-
crease and then to plateau at a fixed constant determined by the finite difference error after
the random error is sufficiently small.

To further reduce the random error in both ∇mJ
AD and ∇mJ

FD, we perform Ms = 100
computations for each of them using random initial conditions, and compute the average

values, denoted as ∇mJ
AD

and ∇mJ
FD

, before computing the error e. That is,

e =
∣∣∇mJ

AD −∇mJ
FD∣∣. (53)

The random errors in the averaged gradients are estimated by first computing the standard
deviation in ∇mJ

AD and ∇mJ
FD respectively using the Ms i.i.d. runs, followed by a rescaling

using the factor 1/
√
Ms.

Ultimately, we want to show that |∇mJ
AD−∇mJ | is small where∇mJ is the true gradient.

To make ∇mJ
FD

a better approximation of ∇mJ , one needs to use a tiny perturbation ∆m
to reduce the central difference error of O(|∆m|2), and relatively large N and Ms to reduce
the random error of O((

√
NMs|∆m|)−1). In our previous work [9], we balanced the particle

discretization (random) error and the finite difference error in ∇mJ
FD

and found that using
∆m = 0.1 was nearly optimal for N = 106 Maxwellian particles, Ms = 100, and initial
conditions similar to (54). Hence, we will also fix ∆m = 0.1 for all simulations here as a
heuristic estimation in the following numerical tests.

For the function ϕ(v) in (16), we use v2l , l ∈ {x, y, z}, so the objective functions are

Tl =
1

N

N∑
i=1

(vlF,i)
2 ≈
ˆ
R3

v2l f(v, T )dv, l ∈ {x, y, z},

the second-order velocity moments of the distribution function in the l-direction at the time
t = T . For the parameter m, we use temperature values in the initial distribution function
m = (T 0

x , T
0
y , T

0
z ). We further refer to these gradients as δJ

δm
= ∂Tl

∂T 0
p
, l, p ∈ {x, y, z}. Here, the

dimension of the parameter m is only 3. A real advantage of this adjoint-state method is, of
course, when the parameter m is extremely high-dimensional since the adjoint-state method
allows one to compute all the components of the gradient ∇mJ

AD by doing only one forward
DSMC simulation and one backward adjoint DSMC simulation.

In all the numerical tests below, we use the same anisotropic Gaussian as the initial
condition,

f0(v) =
1

(2π)3/2
√

T 0
xT

0
y T

0
z

exp

(
− v2x
2T 0

x

−
v2y
2T 0

y

− v2z
2T 0

z

)
, (54)
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where T 0
x = 1, T 0

y = 1, T 0
z = 0.5, so that m = (1, 1, 0.5). In this case, the solution to the

Boltzmann equation (1) will relax to an isotropic Gaussian with the temperature TM = (T 0
x+

T 0
y + T 0

z )/3 = 0.8333(3) as time increases. In the following tests, we use Algorithm 3 for the
forward DSMC simulations with a time step ∆t = 0.1 and the final time t = T = M∆t = 2 at
which only partial relaxation to the isotropic Gaussian is attained. Since the initial condition
and the solution are anisotropic Gaussians with T 0

x , T
0
y , T

0
z ≤ 1, then the upper bound for

the relative velocity, maxi |vi − vi1|, can be taken to be 10, and consequently we can set
Σv = 10β in (49). Therefore, the fraction of particles that participate in virtual collisions at
every time step of the forward DSMC simulations is Nc/N = ∆tµκ = ∆tΣv/ϵ = ∆t10β/ϵ,
based on Algorithm 3. As discussed in Section 3.4.2, for collision kernels in the form of (8),
it is more computationally efficient to use Algorithm 3 as the forward DSMC algorithm
than Algorithm 1. In the numerical tests below, we will also only use Algorithm 3, but will
comment on the gradient calculation based on Algorithm 1 in Section 4.3.

To compute the gradient ∇mJ
AD using Algorithm 2 and formula (38), we need ∇mv

0
i .

Since our initial distribution (54) is an anisotropic Gaussian, we can sample v0i by sampling
3N values from the standard normal distribution N (0, 1) and then rescaling the values with
appropriate initial temperatures as

v0i = (vx,0i , vy,0i , vz,0i ) = (
√
T 0
xN

x,0
i ,
√

T 0
yN

y,0
i ,
√
T 0
zN

z,0
i ),

where N x,0
i ,N y,0

i ,N y,0
i are samples of N (0, 1). For the parameter m = T 0

p , we can then
compute

∇mv
j,0
i =

N j,0
i

2
√

T 0
p

δj,p =
vj,0i

2T 0
p

δj,p, j, p ∈ {x, y, z}.

This way of obtaining ∇mv
j,0
i corresponds to the so-called pathwise gradient estimator [16,

Section 5].

4.1. Simulations with Angle-Independent Collision Kernels

First, we focus on the angle-independent collision kernel by setting κ = 0 and ϵ = 10.
Thus, the collision kernel q(v − v1, σ) = 1/(40π)|v − v1|β following (51).

When β = 0, the collision kernel corresponds to Maxwell molecules discussed in [9]. We
focus on the objective function Ty as an example. After M = 20 time steps of the forward
DSMC simulation using different numbers of particles N , we numerically illustrate the error
in the gradient calculation both with and without the term (48) in the adjoint equation;

see Figures 1a and 1b. The differences in the averaged adjoint DSMC gradients ∇mJ
AD

, as

seen in Figure 1c, are observed to be in the same order as the random errors in ∇mJ
AD

, as
shown in Figure 1d. The comparison in Figure 1 illustrates that the additional term does
not affect angle-independent kernels due to an averaging effect. This phenomenon occurs
because, for angle-independent collision kernels, the post-collision relative velocity σ can be
seen as uniformly distributed over the sphere, which weakens its dependence on the scattering
angle θ and the pre-collision relative velocity α, despite the relation cos θ = σ · α. In [9],
we assumed that σ does not depend on α for the Maxwellian gas and obtained the adjoint
DSMC algorithm without the term (48). Here, we use this example to illustrate that both
adjoint matrices are valid for angle-independent kernels.
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 = 0,  = 0

(a) Error e computed without (48)

 = 0,  = 0

(b) Error e computed with (48)

(c) Differences in ∇mJ
AD

with and without (48) (d) The random errors in ∇mJ
AD

Figure 1: (a)-(b): Comparison of the gradient error (53) for the Maxwellian constant collision kernel (κ = 0,
β = 0) with and without the term (48) in the adjoint matrix (47) in the adjoint DSMC Algorithm 2. (c): The

absolute value of the difference in∇mJ
AD

between the two cases. (d): The random error in∇mJ
AD

measured

by the estimated standard deviation in the averaged value ∇mJ
AD

from Ms = 100 i.i.d. runs. Note that the
term (48) is deterministic and thus does not affect the random error in the adjoint DSMC gradient.

(a) Gradient error e in (53) (b) Standard deviations of ∇mJ
FD

and ∇mJ
AD

Figure 2: The gradient error (a) and the standard deviation (b) for the case β = 1 and κ = 0 after 20 time
steps. The standard deviations plotted in (b) are for the averaged gradient values from Ms = 100 i.i.d. runs.
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Next, we consider the case β = 1. The objective function is Ty, the final temperature in
the y direction. In Figure 2a, we show that the gradient error e, defined in (53), decays as
the number of particles N increases, while Figure 2b illustrates that the standard deviations

of the averaged adjoint DSMC gradient ∇mJ
AD

and finite-difference gradient ∇mJ
FD

both
decay as O(1/

√
N). As mentioned earlier, the error e observed in Figure 2a has three

contributions: the random error contributions from both ∇mJ
AD and ∇mJ

FD, and the
finite difference error in ∇mJ

FD. We remark that, based on the standard deviations shown
in Figure 2b, the random error in ∇mJ

FD could be a leading contribution in e and the
random error in the adjoint DSMC gradient ∇mJ

AD is nearly 10 times smaller.
In Figure 3, we consider the case β = 2, κ = 0, and evaluate the gradient ∂Tl

∂T 0
p
, where l, p ∈

{x, y, z}. We fix the number of particles N = 106, and investigate how the gradient error

e defined in (53) and the standard deviations of ∇mJ
AD

and ∇mJ
FD

change with respect
to the total number of time steps M (the x axis in the plots). We consider M = 1, . . . , 20.
In Figure 3a, the gradient errors are mostly linearly increasing up to perturbations incurred
by the random errors (illustrated in Figure 3b). Based on the forward DSMC Algorithms 1

and 3, the variations of both gradients, ∇mJ
AD

and ∇mJ
FD

, are expected to be O(M)
since the number of sampling steps in the forward DSMC algorithms grows linearly in time.
Therefore, we observe from the log-log plots in Figure 3b that the standard deviations for
both gradients grow as O(

√
M), while the standard deviation of the finite difference gradient

∇mJ
FD

is much bigger than the one for the adjoint DSMC gradient ∇mJ
AD

.

4.2. Simulations with Angle-Dependent Collision Kernels

In this subsection, we consider collision kernels that are both velocity and angle-dependent.
We set β = 1, ϵ = 10 and consider various κ values. The collision kernel takes the form

q(v − v1, σ) =
(1 + κ)

10π 2κ+2
(1 + cos θ)κ|v − v1|, cos θ = σ · v − v1

|v − v1|
.

We remark that when the collision kernel is angle-dependent, the adjoint matrix Dk
i in Al-

gorithm 2 should follow eq. (47) instead of eq. (45). Note that the difference between the
two adjoint matrices is that eq. (47) has an additional term (48).

We first consider cases κ = 1 and κ = 2, and set the objective function as Ty with the
parameterm = T 0

p , where p ∈ {x, y, z}. We plot the gradient errors in Figure 4, both of which
decay as the number of particles N increases. In Figure 5, we focus on the case κ = 5 and
evaluate the gradient ∂Tl

∂T 0
p
where l, p ∈ {x, y, z}, after M = 20 time steps. Similar to Figure 1,

we compare the gradient errors when the adjoint DSMC gradients∇mJ
AD are computed with

the adjoint matrix (45) and (47), respectively. In Figure 5a, all 9 gradient errors plateaued
at a relatively large constant after N ≥ 104. On the other hand, in Figure 5b, all 9 gradient
errors asymptotically decay as the number of particles N increases. All the gradient errors
are about 1 × 10−5 when N = 106. The finite difference gradients ∇mJ

FD are the same in
both figures, so the drastic differences in e come from the adjoint DSMC gradients ∇mJ

AD.
The comparison in Figure 5 indicates that the adjoint matrix D defined in (45) is incorrect
for angle-dependent kernels, which leads to wrong adjoint DSMC gradients in Figure 5a. The
difference between Figure 1 and Figure 5 also shows that the additional term (48) is crucial
for angle-dependent kernels, but plays little role for angle-independent collision kernels.
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(a) Error e defined in (53)

(b) Standard deviations in the averaged gradients ∇mJ
FD

and ∇mJ
AD

Figure 3: The gradient error (a) and the standard deviation (b) of ∂Tl

∂T 0
p
, l, p ∈ {x, y, z}, for the case β = 2,

κ = 0 and N = 106, with the number of time steps M ranging from 1 to 20 (the x axis). In Figure 3b, the

blue log-log plots represent the standard deviations of ∇mJ
FD

while the red log-log plots are for ∇mJ
AD

.
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(a) Gradient error e for κ = 1, β = 1 (b) Gradient error e for κ = 2, β = 1

Figure 4: The gradient error (53) (the y axis) for the collision kernel (51) with β = 1, κ = 1 (left) and κ = 2
(right), after M = 20 time steps. The number of particles N (the x axis) ranges from 102 to 106.

4.3. Comments on the General Kernel Case

All the tests above were performed for separable collision kernels of type (8) and there-
fore were based on Algorithm 3 for the forward DSMC simulations and Algorithm 2 for the
adjoint DSMC simulations. For general collision kernels q(v − v1, σ) = q̃(|v − v1|, θ) that
satisfy (7), we can use Algorithm 1 for the forward DSMC simulations together with Algo-
rithm 2 for the adjoint DSMC simulations. To this end, we have also numerically verified
an approach of computing the forward DSMC via Algorithm 1 (and corresponding adjoint
DSMC via Algorithm 2) that does not split the kernel (8) into velocity-dependent and angle-
dependent parts, but rather performs rejection sampling over the full collision kernel with the
scattering angle σ uniformly sampled over the unit sphere (as described in in Algorithm 1).
In this case, one must modify the ηki term in eq. (37) used in Algorithm 2. Previously, it
was based on rejection sampling using q ∼ |v − v1|β, whereas in this case it is based on
q ∼ |v − v1|β(1 + cos θ)κ.

Based on our numerical results, we conclude that we still need the extra term (48) in (47)
when running Algorithm 2 for an angle-dependent collision kernel. Even though the collision
parameters σ for collisions are sampled uniformly in the forward DSMC Algorithm 1 and do
not explicitly depend on the collision velocity pair (v, v1), after the rejection sampling step,
the unit vector σ becomes implicitly dependent on (v, v1). The only case where the term (48)
is not needed in the adjoint matrix D is when the collision kernel is angle-independent;
see Figure 1 for an illustration.

It is worth noting that, for kernel q in the form of (8) and (51), Algorithm 3 (which takes
advantage of the separable form of q) is more efficient than the forward DSMC Algorithm 1
designed for a more general kernel q, except in the angle-independent case, where the two
algorithms are essentially identical. This is because Algorithm 1 involves sampling more
virtual collisions and taking additional time to sample collision parameters σ for all virtual
collision pairs instead of sampling collision parameters only for the actual collisions (as done
in Algorithm 3). For example, when using kernel (51) with κ = 2, β = 1, Algorithm 3
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(a) Error e computed without (48)

(b) Error e computed with (48)

Figure 5: Comparison of the gradient error (53) (the y axis) for the collision kernel with κ = 5, β = 1 after
M = 20 time steps, with and without the additional term (48) in the adjoint matrix (47) in the adjoint
DSMC Algorithm 2 for gradient calculation. The number of particles N (the x axis) ranges from 102 to 106.
The gradient errors are large without (48) in the adjoint matrix, which leads to a wrong adjoint equation.
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computes approximately 3 times faster than Algorithm 1, while they both provide error of
order 10−4 in the adjoint DSMC gradient ∇mJ

AD for N = 106,M = 20,∆t = 0.1,Ms = 100.
We will analyze the computational cost and memory requirements for these two variants
later in Section 4.4. Nevertheless, Algorithm 1 can be used for general collision kernels (3)
as long as the condition (7) is satisfied (which is generally true for numerical computations).

4.4. Discussion on the Computational Cost or Memory Requirements

This subsection discusses the computational cost and memory requirements associated
with our forward and adjoint DSMC algorithms.

4.4.1. Memory Requirements

The forward DSMC simulation based on Algorithm 1 is done using N particles. Thus,
we need 3N × 8 = 24N bytes in double-precision arithmetic to store the velocities of all the
particles. At each time step, 2Nc = ∆tµN particles virtually collide, which is usually a small
fraction of N . Thus, we disregard the temporary variables used to compute the collisions in
calculating the overall memory requirements. We also override the particle velocities each
time step to avoid using extra memory for the new velocities.

The adjoint DSMC using Algorithm 2 requires 3N × 8 = 24N bytes for the storage of
γk
i ∈ R3. They could be stored in the same memory location for the final particle velocities

vMi as soon as ηki are also computed at the final time t = tM . To later compute the gradient

(41) using the adjoint DSMC algorithm, we also need to store ∂v̂0i(m)
∂m

(24N bytes if m is
a scalar) and the following additional information for each colliding pair at each time step
during the forward DSMC simulation:

• the integer-valued indices {i, i1} of the colliding particles, 4 bytes for each if they are
stored in the UInt32 format that allows values up to 232 − 1 ≈ 4.3× 109;

• the σ vector in S2 represented by the polar coordinate, 8 bytes for each coordinate;

• the unit collision direction α = v−v1
|v−v1| ∈ S2 represented by the polar coordinate, 8 bytes

for each coordinate;

• ηki , η
k
i1
∈ R3 as defined in (37), 8 bytes for each vector component.

In total, the memory requirements are 88 bytes per colliding pair or 44 bytes per colliding
particle. Overall, we need 88Nc new bytes stored per time step. If the number of time steps
is M = T/∆t, the total amount of extra storage needed for the backward propagation is
88NcM = 44Nµ∆tM = 44NµT . It becomes comparable to the 24N bytes needed for the
particle storage in the forward DSMC when we have µT = O(1). Note that Algorithm 1
and Algorithm 3 have two different µ-values. The total amount of extra memory required for
the backward-in-time adjoint propagation is 24N + 44NµT bytes, and the total amount of
memory required for both the forward DSMC and the adjoint DSMC simulations is 48N +
44NµT bytes. To compute the gradient, we require another 24Ndm bytes of memory where
dm is the dimension of the parameter m.
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4.4.2. Computational Cost

In this subsection, we will discuss the computational cost in computing the gradient
through Algorithm 2 using both Algorithm 1 and Algorithm 3 as the forward DSMC algo-
rithm. We will use superscripts “A1” and “A3” in symbols such as µ,Nc and ν to indicate
that they are different quantities from the two different algorithms.

For for a separable collision kernel of type (51), when using Algorithm 3 for the forward
DSMC simulation and Algorithm 2 for the adjoint DSMC, we do

• 12 operations and 3 random numbers (2 indices and 1 for rejection sampling) per
virtual collision pair to select actual collision pairs;

• 59 operations and 2 random numbers (angles θki and φk
i ) per collision pair to collide

two particles;

• 15 operations per virtual collision pair to compute pre-factors
∂ log qki
∂vki

,
∂ log(Σ− qki )

∂vki
for ηki , η

k
i1
in (37);

• 92 operations to collide two γ-particles during the adjoint DSMC algorithm step if the
actual collision occurred between the corresponding v-particles in the forward DSMC
process, and 6 operations if it did not.

Every time step, we have in total (12+59νA3+15+92νA3+6(1−νA3))NA3
c =

(
33 + 145νA3

)
NA3

c

flops (floating point operations) and generate (3+2νA3)NA3
c random numbers, where NA3

c =
∆tµA3N/2 and νA3 represents a fraction of particles that participated in the actual colli-
sions out of all virtual pairs. Note that νA3 depends on the collision kernel, its associated
parameters and the current velocity distribution (namely, Σv, β and the distribution of Vk).
Based on the definition of µA3 in (10) and the particular form of the collision kernel (51),
we know that µA3 = Σv/ϵ = max |v − v1|β/ϵ ≈ 10β/ϵ (in our simulations we assume that
|v − v1| ≈ 10 since the distribution f(v, t) is close to Maxwellian with width 1 for all times
t). If we further assume that νA3 and µA3 remain approximately the same among different
time steps, for a total of M = T/∆t time steps, we have

(
33 + 145νA3

)
µA3NT/2 flops, and

(3+2νA3)µA3NT/2 random number generations. We count the random number generations
separately since these operations take much more CPU time and are approximately 10-100
flops each, based on our observations from running the numerical tests.

On the other hand, for a kernel of type (51), if we use Algorithm 1 for the forward DSMC
simulation and Algorithm 2 for the adjoint DSMC, we do

• 15 operations and 4 random numbers (2 indices, 1 for θki , 1 for rejection sampling) per
virtual collision pair to select actual collision pairs;

• 60 operations and 1 random number (angle φk
i ) per collision pair to collide two particles;

• 17 operations per virtual collision pair to compute pre-factors
∂ log qki
∂vki

,
∂ log(Σ− qki )

∂vki
for ηki , η

k
i1
in (37);
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Figure 6: Illustration of the computation cost and memory requirement for a single evaluation of the adjoint
DSMC gradient with respect to the number of time steps (ranging from 10 to 100), ∆t = 0.1. Here, we use
N = 104 particles and set T0 = (1, 1, 0.5), κ = 0, β = 2 and ϵ = 10. We remark that both the CPU time and
the memory requirements are O(T ) where T = M∆t is the total simulation time.

• 92 operations to collide two γ-particles during the adjoint DSMC algorithm step if the
actual collision occurred between the corresponding v-particles in the forward DSMC
process, and 6 operations if it did not.

Thus, we have in total (15+60νA1+17+92νA1+6(1−νA1))NA1
c = (38+146νA1)NA1

c operations
and (4 + νA1)NA1

c random number generations, where NA1
c = ∆tµA1N/2 and νA1 is roughly

a fraction of particles that participated in the actual collisions out of all virtual pairs. Notice
that here µA1 = 4πΣ = 4πmax |q(v − v1, σ)| = (1 + κ)max |v − v1|β/ϵ ≈ (1 + κ)10β/ϵ.
Again, if we assume that νA1 and µA1 stay roughly the same among all M = T/∆t time
steps, we have in total (38+ 146νA1)µA1NT/2 flops and (4+ νA1)µA1NT/2 random number
generations in the forward and adjoint DSMC simulations.

Next, we compare the gradient computations when using Algorithm 1 and Algorithm 3
as the forward DSMC algorithm. First, we point out that µA1 ≥ µA3, as the former is
about (1 + κ)10β/ϵ while the latter is about 10β/ϵ. On the other hand, the maximum
value of the sampling distribution used in the rejection sampling for Algorithm 1 is Σ ≈
(1+κ)10β, while the value is Σv ≈ 10β for the rejection sampling in Algorithm 3. As a result,
the accepted particles are much fewer in Algorithm 1 compared to those in Algorithm 3,
i.e., νA1 ≤ νA3. We observe that overall µA1νA1 ≈ µA3νA3. That is, the two algorithms
share a similar number of actual collisions while Algorithm 1 incurs (1 + κ) times more
virtual collisions than Algorithm 3. Consequently, Algorithm 1 incurs more flops and random
number generations than Algorithm 3 for the same separable collision kernel (51) when κ > 0.
Recall that when κ = 0, these two algorithms become the same.

Compared to [9], which studied the adjoint DSMC algorithm for Maxwellian particles,
we use about two times more memory, operations, and random number generations to deal
with the more general collision kernel in both the forward and the adjoint DSMC (using Al-
gorithm 3 and Algorithm 2, respectively). However, for the special case of κ = β = 0, i.e.,
the Maxwellian particles, one can adapt the current framework by switching to the more
efficient algorithm in [9] through an if-then statement in the algorithm. This way, we can
still take advantage of the extra efficiency when handling Maxwellian particle collisions.

4.4.3. Numerical Illustration

In Figure 6, we show the CPU time and memory requirements for a single run to compute
the adjoint DSMC gradient for a various number of time steps M by fixing the number

29



Figure 7: Illustration of the computation cost and memory requirement for a single evaluation of the adjoint
DSMC gradient with respect to the number of particles (ranging from 105 to 106). Here, we use M = 20
time steps ∆t = 0.1 and set T0 = (1, 1, 0.5), κ = 0, β = 2 and ϵ = 10.

of particles N , while in Figure 7, we fix M and vary N . In these simulations we used
κ = 0, β = 2, ϵ = 10, so µ = µκ = Σv/ϵ ≈ 10β/ϵ = 10. The total amount of memory required
for the adjoint DSMC was about 40 times the amount required for the forward DSMC when
T = 2, i.e., M = 20. As we can observe from these plots, both the computational cost and
the memory requirements in the adjoint DSMC algorithm grow linearly with respect to the
number of time steps M and the number of particles N . However, we want to point out that,
based on our analysis, despite their linear growth with respect to M , the computational cost
and memory requirement is O(T ) where T = M∆t is total simulation time.

5. Conclusions

As discussed in Section 1 and Section 3.1.4, the method developed in this work is mainly
based on the DTO approach but also involves an OTD step. The reason for the OTD step
is that the rejection sampling involves a decision of whether a virtual collision is real, and
the decision depends on the unknown parameter for which we want to compute the gradient.
Differentiation after this choice would be applied to a discontinuous function (to indicate
whether a collision is real or virtual) of the particle velocity, leading to a singularity. The
OTD step in the new adjoint DSMC method, i.e., first differentiating the expectation over
the decision and then sampling the resulting gradient, enables us to circumvent the difficulty
of directly differentiating a discontinuous decision function from the rejection sampling.

Another main contribution of this work is to consider collision kernels that are also
scattering angle-dependent. As a result, the post-collision relative velocity depends on the
pre-collision relative velocity. Although in the angle-independent cases, such as a constant
Maxwellian collision kernel, the post-collision relative velocity always depends on the scatter-
ing angle as well as the pre-collision velocities based on their definitions, we can ignore this
dependence due to the averaging effect since the post-collision relative velocity is uniformly
distributed over the sphere. This is not the case for angle-dependent kernels. In our new
derivations for the adjoint DSMC algorithm, the resulting adjoint equation has an additional
term that reflects this dependence. We remark that this additional term can be efficiently
computed without extra memory requirement.

This paper extends the adjoint DSMC method to a much more general class of collision
kernels for the Boltzmann equation than the original proposal [9]. In future works, we plan
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to extend the adjoint DSMC method, for example, to Coulomb collisions and apply the
method to large-scale optimization problems constrained by Boltzmann equations.

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Award Number DMS-1913129 and the U.S. Department of Energy under Award Number
DE-FG02-86ER53223. Y. Yang acknowledges support from Dr. Max Rössler, the Walter
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