
Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based
Optimization Problems∗

Levon Nurbekyan† , Wanzhou Lei‡ , and Yunan Yang§

Abstract. We propose efficient numerical schemes for implementing the natural gradient descent (NGD) for a broad
range of metric spaces with applications to PDE-based optimization problems. Our technique represents the
natural gradient direction as a solution to a standard least-squares problem. Hence, instead of calculating,
storing, or inverting the information matrix directly, we apply efficient methods from numerical linear
algebra. We treat both scenarios where the Jacobian, i.e., the derivative of the state variable with respect
to the parameter, is either explicitly known or implicitly given through constraints. We can thus reliably
compute several natural NGDs for a large-scale parameter space. In particular, we are able to compute
Wasserstein NGD in thousands of dimensions, which was believed to be out of reach. Finally, our numerical
results shed light on the qualitative differences between the standard gradient descent and various NGD
methods based on different metric spaces in nonconvex optimization problems.

Key words. natural gradient, constrained optimization, least-squares method, gradient flow, inverse problem

AMS subject classifications. 65K10, 49M15, 49M41, 90C26, 49Q22

1. Introduction. In this paper, we are interested in solving optimization problems of the form

(1.1) inf
θ
f(ρ(θ)),

where f is the objective/loss function and ρ(θ) is the state variable parameterized by θ. We mainly
consider ρ(θ) as a PDE-based forward model, and f is a suitable discrepancy measure between the
output of the forward model and the data. Inverse problems, such as the full waveform inversion
(FWI), are classical examples of (1.1). More recent examples are machine learning-based PDE
solvers where ρ(θ) is a neural network with weights θ that approximates the solution to the PDE [42].
They are typical large-scale optimization problems either due to fine grids parameterization of the
unknown parameter or large networks employed to approximate the solutions.

First-order methods, especially in neural network training, are workhorses of high-dimensional
optimization tasks. One such approach is the gradient descent (GD) method, whose continuous
analog is the following gradient flow equation

θ̇ = −∂θf(ρ(θ)).

Although reasonably effective and computationally efficient, GD might suffer from local minima
trapping, slow convergence, and sensitivity to hyperparameters. Consequently, first-order methods
and some of their (stochastic and deterministic) variants are not robust and require a significant
hyperparameter tuning on a problem-by-problem basis [51]. Such performance is often explained
by the lack of curvature information in the parameter updates. Many optimization algorithms have
been developed to improve the convergence speed, such as Newton-type methods [48], quasi-Newton
methods [37], and various acceleration techniques [36] including momentum-based methods [41].

∗Submitted to the editors.
Funding: L. Nurbekyan was partially supported by AFOSR MURI FA 9550 18-1-0502 grant. Y. Yang was partially

supported by NSF grant DMS-1913129.
†Department of Mathematics, UCLA (lnurbek@math.ucla.edu).
‡Harvard University (wanzhoulei@g.harvard.edu).
§Institute for Theoretical Studies, ETH Zürich (yunan.yang@eth-its.ethz.ch).

1

ar
X

iv
:2

20
2.

06
23

6v
3

 [
m

at
h.

O
C

]
 1

1
Ja

n
20

23

mailto:lnurbek@math.ucla.edu
mailto:wanzhoulei@g.harvard.edu
mailto:yunan.yang@eth-its.ethz.ch

2 L. NURBEKYAN, W. LEI, AND Y. YANG

Recently, there has been a revival of second-order methods in the machine-learning commu-
nity [48]. Significant developments include the AdaHessian [51] and NGD [1, 31]. Both techniques
incorporate curvature information into the parameter update. AdaHessian preconditions the gra-
dient with an adaptive diagonal approximation to the Hessian [51]. The diagonal approximation
is estimated by an adaption of Hutchinson’s trace estimator [17]. Consequently, one obtains an
optimization method for (1.1) with a similar observed convergence rate to Newton’s method with a
computational cost comparable to first-order methods. AdaHessian shows state-of-the-art perfor-
mance across a range of machine learning tasks and is observed to be more robust and less sensitive
to hyperparameter choices compared to several stochastic first-order methods [51].

A different approach is the natural gradient descent (NGD) method [1, 2, 38, 23, 24, 30, 31, 45],
which preconditions the gradient with the information matrix instead of the Hessian; see (1.2).
NGD performs the steepest descent with respect to the ρ-space, the “natural” manifold where
ρ(θ) resides, instead of the parameter θ-space [1, 2]. A Riemannian structure is imposed on the
parameterized subset {ρ(θ)} and then pulled back into the θ-space. NGD is sometimes also regarded
as a generalized Gauss–Newton method [44, 38, 31], which has a faster convergence rate than GD.
In particular, NGD can be interpreted as an approximate Netwon’s method when the manifold
metric and the objective function f are compatible [31]. Other properties of NGD include local
invariance with respect to the re-parameterization, robustness with respect to hyperparameter
choices, ability to progress with large step-sizes, and enforcing a state-dependent positive semi-
definite preconditioning matrix. Inspired by the success of NGD in machine learning, we aim to
extend and apply it to PDE-based optimization problems, which are mostly formulated in proper
functional spaces with rich flexibility in choosing the metric.

Mathematically, continuous-time NGD is the preconditioned gradient flow

(1.2) θ̇ = −G(θ)−1∂θf(ρ(θ)),

where G(θ) is the pull-back of a (formal) Riemannian metric in the ρ-space. It is often referred
to as an information matrix and will be discussed in detail in Section 2. There are two options to
discretize (1.2): explicit and implicit. An explicit Euler discretization of (1.2) is

(1.3) θl+1 = θl − τ lG(θl)−1∂θf(ρ(θl)), l = 0, 1, . . . ,

where τ l > 0 is the step size or learning rate. An implicit Euler discretization of (1.2) gives rise to

(1.4) θl+1 = argmin
θ

{
f(ρ(θ)) +

〈G(θl)(θ − θl), (θ − θl)〉
2τ l

}
,

where 〈·, ·〉 is the Euclidean inner product. If we denote by dρ the divergence or distance generating
G(θ), the second term in (1.4) is the leading-order Taylor expansion of 1

2τ dρ(ρ(θ), ρ(θl))2 at θl.
Thus, the solution of (1.4) agrees with

(1.5) θl+1 = argmin
θ

{
f(ρ(θ)) +

dρ(ρ(θ), ρ(θl))2

2τ l

}
,

up to the first order. Note that (1.5) captures the underlying idea of the NGD: takeing advantage
of the geometric structure to find a direction with a maximum descent in the ρ-space. In contrast,
finding a maximum descent in the θ-space as done by the “standard” implicit GD is

(1.6) θl+1 = argmin
θ

{
f(ρ(θ)) +

dθ(θ, θ
l)2

2τ l

}
,

EFFICIENT NATURAL GRADIENT DESCENT METHODS 3

where dθ is the chosen metric for the θ-space. In this work, we focus on different dρ and consider
dθ as the Euclidean distance for simplicity. Intuitively, one may interpret it as a shift from the
parametric θ-space to the more “natural” ρ-space. Thus, the infinitesimal decrease in the value of
f and the direction of motion for ρ onM at ρ = ρ(θ) are invariant under re-parameterizations [31].

NGD has been proven to be advantageous in various problems in machine learning and statis-
tical inference, such as blind source separation [3], reinforcement learning [39] and neural network
training [44, 33, 38, 32, 21, 31, 45, 25]. Further applications include solution methods for high-
dimensional Fokker–Planck equations [22, 28]. Despite its success in statistical inferences and
machine learning, the NGD method is far from being a mainstream computational technique, es-
pecially in PDE-based applications. A major obstacle is its computational complexity. In (1.3),
explicit discretization of NGD reduces to preconditioning the standard gradient by the inverse of
an often dense information matrix. The numerical computation is often intractable.

Existing works in the literature focused on explicit formulae [49], fast matrix-vector prod-
ucts [44, 33, 38, 31], and factorization techniques [32] for natural gradients generated by the Fisher–
Rao metric in the ρ-space where ρ is the output of feed-forward neural networks. These methods
exploit the structural compatibility of standard loss functions and the Fisher metric by interpreting
the Fisher NGD as a generalized Gauss–Newton or Hessian-free optimization [31, Sec. 9.2]. The
computational aspects of feed-forward neural networks are also utilized since computations through
the forward and backward passes are recycled. Thus, to the best of our knowledge, the neural-
network community focuses on the Hessian approximation aspect in the context of feed-forward
neural network models rather than the geometric properties of the forward-model-space. For the
Wasserstein NGD (WNGD), [21, 7] rely on implicit Euler discretization, but their methods still
suffer from accuracy issues due to the high dimensionality of the parameter space [45, Sec. 2]. A
regularized WNGD was considered in [45]. Unfortunately, by design, the method blows up when
the regularization parameter decreases to zero, so it cannot compute the original WNGD. In [52],
compactly supported wavelets were used to diagonalize the information matrix, which is limited to
the periodic setting with strictly positive ρ(θ) and also certain smoothness assumptions for ρ(θ).

There are three main contributions in our work. First, we depart from the Hessian approxima-
tion framework and adopt a more general geometric formalism of the NGD. Our approach applies
to a general metric for the state space, which can be independent of the choice of the objective
function. As examples, we treat Euclidean, Wasserstein, Sobolev, and Fisher–Rao natural gradi-
ents in a single framework for an arbitrary loss function. We focus on the standard least-squares
formulation of the NGD direction. Second, we streamline the general NGD computation and de-
velop two approaches to whether the forward model θ 7→ ρ(θ) is explicit or implicit. When the
Jacobian ∂θρ is analytically available, we utilize the (column-pivoting) QR decomposition for which
a low-rank approximation can be directly applied if necessary [16]. When ∂θρ is only implicitly
available through the optimization constraints, we employ iterative solution procedures such as the
conjugate gradient method [34] and utilize the adjoint-state method [40]. This second approach
shares the same flavor with the method of fast matrix-vector product for the Fisher–Rao NGD for
neural network training [44, 33, 38, 31], but it allows one to apply the general NGD to large-scale
optimization problems (see Subsection 4.3 for example). In particular, our method can perform
high-dimensional Wasserstein NGD, which was believed to be out of reach in the literature [45,
Sec. 1]. Last but not least, we use a few representative examples to demonstrate that the choice
of metric in NGD matters as it can not only quantitatively affect the convergence rate but also
qualitatively determine which basin of attraction the iterates converge to.

The rest of the paper is organized as follows. In Section 2, we first present the general math-
ematical formulations of the natural gradient based on a given metric space (M, g) and how it
contrasts with the standard gradient. We then discuss a few common natural gradient examples

4 L. NURBEKYAN, W. LEI, AND Y. YANG

and how they can all be reduced to a standard L2-based minimization problem on the continuous
level. In Section 3, we demonstrate our general computational approaches under a unified frame-
work that applies to any NGD method. The strategies concentrate on two scenarios regarding
whether the Jacobian ∂θρ is explicitly given or not, followed by Section 4 where we apply the pro-
posed numerical strategies for NGD methods to optimization problems under these two scenarios.
Conclusions and further discussions follow in Section 5.

2. Mathematical formulations of NGD. We begin by discussing the NGD method in an ab-
stract setting before focusing on the common examples.

Assume that ρ is in a Riemannian manifold (M, g), and θ is in an open set Θ ⊂ Rp. Furthermore,
assume that the correspondence θ ∈ Θ 7→ ρ(θ) ∈M is smooth so that there exist tangent vectors

(2.1)
{
∂gθ1ρ(θ), ∂gθ2ρ(θ), · · · , ∂gθpρ(θ)

}
⊂ TρM.

The superscript g in ∂g highlights the dependence of tangent vectors on the choice of the Riemannian
structure (M, g). Furthermore, assume that f : M 7→ R is a smooth function and denote by
∂gρf ∈ TρM its metric gradient; that is, for all smooth curves t 7→ ρ(t), we have

df(ρ(t))

dt
=
〈
∂gρf(ρ(t)), ∂gt ρ(t)

〉
g(ρ(t))

.

Tangent vectors {∂gθiρ}
p
i=1 incorporate fundamental information on how ρ(θ) traversesM when

θ traverses Θ. Indeed, an infinitesimal motion of θ along the coordinate θi-axis in Θ induces an
infinitesimal motion of ρ along ∂gθiρ in M. More generally, if

dθ

dt
= θ̇ = η = (η1, . . . , ηp)

>,

then
∂gt ρ(θ) = η1∂

g
θ1
ρ+ · · ·+ ηp∂

g
θp
ρ.

Consequently, we have that

df(ρ(θ))

dt
=
〈
∂gρf, ∂

g
t ρ(θ)

〉
g(ρ(θ))

=
〈
∂gρf,

p∑
i=1

ηi∂
g
θi
ρ
〉
g(ρ(θ))

.

Intuitively, to achieve the largest descent in the loss f(ρ(θ)), we want to choose η = (η1, . . . , ηp)
>

such that ∂gρf is as negatively correlated with
∑p

i=1 ηi∂
g
θi
ρ as possible in terms of the given metric

g. Thus, the NGD direction corresponds to the best approximation of −∂gρf by {∂gθiρ} in TρM:

(2.2) ηnat = argmin
η

∥∥∥∥∂gρf +

p∑
i=1

ηi∂
g
θi
ρ

∥∥∥∥2

g(ρ(θ))

.

In other words, the NGD corresponds to the evolution of θ that attempts to follow the manifold GD
of f on M as closely as possible. Since (TρM, g) is an inner-product space where g may depend on
ρ, and ρ depends on θ, (2.2) implies that under the natural gradient flow, the direction of motion
for ρ on M is given by the g(ρ(θ))-orthogonal projection of −∂gρf onto span{∂gθ1ρ, . . . , ∂

g
θp
ρ}:

(2.3) ∂gt ρ =

p∑
i=1

ηnati ∂gθiρ =: P∂gρf.

EFFICIENT NATURAL GRADIENT DESCENT METHODS 5

Since span{∂gθ1ρ, . . . , ∂
g
θp
ρ} is invariant under smooth changes of coordinates θ = θ(ψ), we obtain

that (2.3) is also invariant under such transformations. Additionally, the infinitesimal decay of the
loss function is also invariant under smooth changes in the coordinates. Indeed,

df(ρ(θ))

dt
= −‖P∂gρf‖2g(ρ(θ)).

A critical benefit of these invariance properties is mitigating potential negative effects of a poor
choice of parameterization by filtering them out (since the corresponding decrease in the loss func-
tion is parameter-invariant) and reaching argminρ∈M f(ρ) as quickly and as closely as possible. For
the analysis of NGD based on this insight, we refer to [31, 28] for more details.

Remark 2.1. When {∂gθiρ} are linearly dependent, the ηnat in (2.2) is not unique, and we pick the

one with the minimal length for computational purposes; that is, we replace G−1(θ) by the Moore–
Penrose pseudoinverse G(θ)† in (1.2) and elsewhere. It is worth noting that this choice is crucial
to guarantee convergence and generalization properties of the NGD method in some applications;
see [54] for example. Alternatively, one may consider a damping variant of G; see Subsection 3.5.1.

To compare the natural gradient with the standard gradient ∂θf(ρ(θ)), first note that

df(ρ(θ))

dt
=
〈
∂gρf,

p∑
i=1

ηi∂
g
θi
ρ
〉
g(ρ(θ))

=

p∑
i=1

〈
∂gρf, ∂

g
θi
ρ
〉
g(ρ(θ))

ηi = ∂θf(ρ(θ)) · η.

Therefore, in a similar form with (2.2), the GD direction is the solution to

ηstd = argmin
η
‖∂θf(ρ(θ)) + η‖2.

In other words, GD is the steepest descent in the θ-space, whereas NGD is an approximation of
the steepest descent in the ρ-space based on a given metric g. Furthermore, GD leads to

∂gt ρ =

p∑
i=1

ηstdi ∂gθiρ = −
p∑
i=1

〈
∂gρf, ∂

g
θi
ρ
〉
g(ρ(θ))

∂gθiρ,

df(ρ(θ))

dt
=− ‖∂θf(ρ(θ))‖22 = −

p∑
i=1

∣∣∣〈∂gρf, ∂gθiρ〉g(ρ(θ))

∣∣∣2 ,
which are not necessarily invariant under coordinate transformations.

When {∂gθiρ} are linearly independent, we obtain that

(2.4) ηnat = −G(θ)−1∂θf(ρ(θ)) = G(θ)−1ηstd,

where G(θ) is the information matrix whose (i, j)-th entry is

(2.5) Gij(θ) =
〈
∂gθiρ, ∂

g
θj
ρ
〉
g(ρ(θ))

, i, j = 1, . . . , p.

Thus, an NGD direction is a GD direction preconditioned by the inverse of the information matrix.
Since the information matrix G(θ) is often dense and can be ill-conditioned, direct application

of (2.4) is prohibitively costly for high-dimensional parameter space; that is, large p. Our goal is to
calculate ηnat via the least-squares formulation (2.2), circumventing the computational costs from
assembling and inverting the dense matrix G directly.

6 L. NURBEKYAN, W. LEI, AND Y. YANG

2.1. L2 natural gradient. In this subsection, we embed ρ in the metric space (M, g) =(
L2(Rd), 〈·, ·〉L2(Rd)

)
. In this case, the tangent space TρM = L2(Rd) for any ρ ∈M, and

〈
ζ, ζ̂
〉
g(ρ)

=

∫
Rd
ζ(x)ζ̂(x)dx, ∀ζ, ζ̂ ∈ TρM.

The linear structure of L2(Rd) is advantageous for developing differential calculus, and many
finite-dimensional concepts generalize naturally. Indeed, the tangent vectors (2.1) for a smooth
mapping θ ∈ Θ 7→ ρ(θ, ·) ∈ L2(Rd) are {ζ1, ζ2, · · · , ζp} given by

(2.6) ζi(x) = ∂θiρ(θ, x), i = 1, . . . , p.

The information matrix in (2.5) is given by

GL
2

ij (θ) =

∫
Rd
∂θiρ(θ, x)∂θjρ(θ, x)dx, i, j = 1, 2, · · · , p.

Next, for f : L2(Rd) 7→ R, we obtain that the L2-derivative at ρ is ∂ρf(ρ) ∈ L2(Rd) such that

(2.7) lim
t→0

f(ρ+ tζ)− f(ρ)

t
=

∫
Rd
∂ρf(ρ)(x) ζ(x)dx, ∀ζ ∈ L2(Rd).

Thus, ∂ρf is the commonly known derivative in the sense of calculus of variations. Finally, for
smooth ρ : Θ→ L2(Rd) and f : L2(Rd)→ R, formula (2.2) leads to the L2 natural gradient

(2.8) ηnatL2 = argmin
η∈Rp

∥∥∥∥∂ρf +

p∑
i=1

ηiζi

∥∥∥∥2

L2(Rd)

.

The L2 metric is not a typical choice for the NGD. Nevertheless, this metric is important as a
basis for computing more complex NGDs. Additionally, see Section 2.6 for the connection between
L2-based NGD and the Gauss–Newton method.

2.2. Hs natural gradient. In this subsection, we assume that ρ is embedded in the L2-based
Sobolev space Hs(Rd) for s ∈ Z (we return to the L2 case if s = 0). The metric space (M, g) =(
Hs(Rd), 〈·, ·〉Hs(Rd)

)
. Since this is also a Hilbert space, TρM = Hs(Rd) for all ρ ∈M, and

〈ζ, ζ̂〉g(ρ) = 〈ζ, ζ̂〉Hs(Rd) =

{∫
Rd D

sζ ·Dsζ̂ dx, s ≥ 0,∫
Rd D

−sχ ·D−sχ̂ dx, s < 0,
ζ, ζ̂ ∈ TρM,

where Ds is the linear operator whose output is the vector of all the partial derivatives up to order
s for s ≥ 0. For s < 0, we define χ = ((D−s)∗D−s)−1ζ and χ̂ = ((D−s)∗D−s)−1ζ̂. For example,
(D−s)∗D−s = I −4 if s = −1 and I −4 +42 if s = −2 [50]. Note that D−s((D−s)∗D−s)−1 =
((D−s)∗)† for s < 0, where † is the notation for pseudoinverse. Thus, we can rewrite

〈ζ, ζ̂〉Hs(Rd) = 〈D−sχ,D−sχ̂〉L2(Rd) =
〈
((D−s)∗)†ζ, ((D−s)∗)†ζ̂

〉
L2(Ω)

, ∀ζ, ζ̂ ∈ TρM.

For a smooth ρ : Θ→ Hs(Rd), the tangent vectors are still {ζi} in (2.6) but now are considered
as elements of Hs(Rd). This means that the information matrix GH

s
(θ) defined in (2.5) is given by

GH
s

ij (θ) = 〈∂θiρ, ∂θjρ〉Hs(Rd) =

{∫
Rd D

s∂θiρ(θ, x) ·Ds∂θjρ(θ, x) dx, s ≥ 0,∫
Rd((D

−s)∗)†∂θiρ(θ, x) · ((D−s)∗)†∂θjρ(θ, x) dx, s < 0,

EFFICIENT NATURAL GRADIENT DESCENT METHODS 7

for i, j = 1, . . . , p. Note that GH
s

is different from GL
2

due to the inner product.
Next, we calculate the Hs gradient of smooth f : Hs(Rd)→ R. For s ≥ 0, we have that

lim
t→0

f(ρ+ tζ)− f(ρ)

t
= 〈∂Hs

ρ f, ζ〉Hs(Rd) =

∫
Rd

Ds∂H
s

ρ f ·Dsζ dx =

∫
Rd

(Ds)∗Ds ∂H
s

ρ f ζ dx,

and so from (2.7) we obtain

∂H
s

ρ f = ((Ds)∗Ds)−1 ∂ρf, s ≥ 0.

When s < 0, under analogous assumptions with the case s ≥ 0, we have that

lim
t→0

f(ρ+ tζ)− f(ρ)

t
=〈∂Hs

ρ f, ζ〉Hs(Rd) =

∫
Rd

((D−s)∗)†∂H
s

ρ f · ((D−s)∗)†ζdx

=

∫
Rd

(D−s)†((D−s)∗)†∂H
s

ρ f · ζdx =

∫
Rd

((D−s)∗D−s)†∂H
s

ρ f ζdx.

Thus, from (2.7), we have
∂H

s

ρ f = (D−s)∗D−s∂ρf, s < 0.

Finally, for smooth ρ : Θ→ Hs(Rd) and f : Hs(Rd)→ R, (2.2) leads to the Hs natural gradient

(2.9) ηnatHs = argmin
η∈Rp

∥∥∥∥∂Hs

ρ f +

p∑
i=1

ηiζi

∥∥∥∥2

Hs(Rd)

.

For numerical implementation, we reduce this previous formulation into a least-squares problem in
L2(Rd). More specifically, for s ≥ 0, (2.9) can be written as

ηnatHs = argmin
η∈Rp

∥∥∥∥Ds((Ds)∗Ds)−1∂ρf +

p∑
i=1

ηi D
sζi

∥∥∥∥2

L2(Rd)

.

Furthermore, for s < 0 we have that (2.9) can be written as

ηnatHs = argmin
η∈Rp

∥∥∥∥D−s∂ρf +

p∑
i=1

ηi ((D−s)∗)†ζi

∥∥∥∥2

L2(Rd)

.

Both cases share the same form (2.10) with L = Ds for s ≥ 0 and L = ((D−s)∗)† for s < 0:

(2.10) ηnatHs = argmin
η∈Rp

∥∥∥∥(L∗)†∂ρf +

p∑
i=1

ηi Lζi

∥∥∥∥2

L2(Rd)

.

2.3. Ḣs natural gradient. Next, we consider the NGD with respect to the Sobolev semi-norm
Ḣs. For simplicity, we assume that ρ is supported in a smooth bounded domain Ω ⊂ Rd. For s > 0,
we define the space Ḣs(Ω) =

{
ζ ∈ Hs(Ω) :

∫
Ω ζ = 0

}
with the inner product

〈ζ, ζ̂〉Ḣs(Ω) = 〈D̃sζ, D̃sζ̂〉L2(Ω) =

∫
Ω
D̃sζ · D̃sζ̂dx, ∀ζ, ζ̂ ∈ Ḣs(Ω),

where D̃s is the linear operator whose output is the vector of all partial derivatives of positive order
up to s. To consider the Ḣs natural gradient flows, we embed ρ in (M, g), where

M =

{
ρ ∈ Hs(Ω) :

∫
Ω
ρ = 1

}
, TρM = Ḣs(Ω), 〈ζ, ζ̂〉g(ρ) = 〈ζ, ζ̂〉Ḣs(Ω), ∀ζ, ζ̂ ∈ TρM.

8 L. NURBEKYAN, W. LEI, AND Y. YANG

For a smooth ρ : Θ→M, we still have that the tangent vectors are {ζi} as defined in (2.6). Since∫
Ω ρ(θ, x)dx = 1 for all θ ∈ Θ, we have that∫

Ω
ζi(x)dx =

∫
Ω
∂θiρ(θ, x)dx = ∂θi

∫
Ω
ρ(θ, x)dx = 0, i = 1, . . . , p,

and thus {ζi} ⊂ TρM. The information matrix (2.5) for this case is GḢ
s
(θ) given by

GḢ
s

ij (θ) = 〈∂θiρ, ∂θjρ〉Ḣs(Ω) =

∫
Ω
D̃s∂θiρ(θ, x) · D̃s∂θjρ(θ, x)dx, i, j = 1, . . . , p.

On the other hand, for f :M→ R, we have that ∂Ḣ
s

ρ f ∈ Ḣs(Ω) where ∀ζ ∈ TρM,

lim
t→0

f(ρ+ tζ)− f(ρ)

t
= 〈∂Ḣs

ρ f, ζ〉Ḣs(Ω) =

∫
Ω
D̃s∂Ḣ

s

ρ f · D̃sζdx =

∫
Ω

(D̃s)∗D̃s∂Ḣ
s

ρ f ζdx.

The adjoint (D̃s)∗ is taken with respect to the L2(Ω) inner product. Hence, based on (2.7),

(2.11)

∫
Ω

(
∂ρf − (D̃s)∗D̃s∂Ḣ

s

ρ f
)
ζdx = 0, ∀ζ ∈ TρM.

Furthermore, denote by 1 the constant function that is equal to 1 on Ω. We then have that

TρM = span{1}⊥ = ker(D̃s)⊥ = Im((D̃s)∗),

where ⊥ is again taken with respect to the L2(Ω) inner product. Hence, using the properties of
adjoint operators, we obtain

∂Ḣ
s

ρ f =
(

(D̃s)∗D̃s
)†
∂ρf, s > 0.

Next, we discuss the case s < 0. As the dual space of Ḣ−s(Ω), the space Ḣs(Ω) is equipped
with the dual norm

‖ζ‖Ḣs(Ω) = sup
{
〈ζ, φ〉 : ‖φ‖Ḣ−s(Ω) ≤ 1

}
.

Using the Poincaré inequality and the Riesz representation theorem, we obtain that for every
ζ ∈ span{1}⊥, the map φ 7→

∫
Ω ζφ is a continuous linear operator on Ḣ−s(Ω), and there exists a

unique χ ∈ Ḣ−s(Ω) such that∫
Ω
ζ φ dx =

∫
Ω
D̃−sχ D̃−sφ dx, ∀φ ∈ Ḣ−s(Ω).

Hence, ζ = (D̃−s)∗D̃−sχ together with the homogeneous Neumann boundary condition. Therefore,

‖ζ‖Ḣs(Ω) = ‖D̃−sχ‖L2 = ‖χ‖Ḣ−s(Ω).

Using similar arguments for the s > 0 case, we obtain that

〈ζ, ζ̂〉Ḣs(Ω) = 〈D̃−sχ, D̃−sχ̂〉L2(Ω) =
〈

((D̃−s)∗)†ζ, ((D̃−s)∗)†ζ̂
〉
L2(Ω)

, ∀ζ, ζ̂ ∈ span{1}⊥.

For more details on Ḣs(Ω) where s < 0, we refer to [4, Lecture 13].

EFFICIENT NATURAL GRADIENT DESCENT METHODS 9

Next, we embed ρ in space M =
{
ρ ∈ L2(Ω) :

∫
Ω ρ = 1

}
with TρM = span{1}⊥ and

〈ζ, ζ̂〉g(ρ) =
〈

((D̃−s)∗)†ζ, ((D̃−s)∗)†ζ̂
〉
L2(Ω)

, ∀ζ, ζ̂ ∈ TρM.

Furthermore, for a smooth function f :M→ R, we have that

lim
t→0

f(ρ+ tζ)− f(ρ)

t
= 〈∂Ḣs

ρ f, ζ〉Ḣs(Ω) =

∫
Ω

((D̃−s)∗D̃−s)†∂Ḣ
s

ρ f ζdx.

Together with (2.7), we have∫
Ω

(
∂ρf − ((D̃−s)∗D̃−s)†∂Ḣ

s

ρ f
)
ζdx = 0, ∀ζ ∈ TρM.

After performing analysis similar to the s > 0 case, we obtain that

∂Ḣ
s

ρ f = (D̃−s)∗D̃−s∂ρf, s < 0.

Finally, for both s > 0 and s < 0 cases, (2.2) leads to the Ḣs natural gradient

(2.12) ηnat
Ḣs = argmin

η∈Rp

∥∥∥∥∂Ḣs

ρ f +

p∑
i=1

ηiζi

∥∥∥∥2

Ḣs(Rd)

,

for smooth ρ : Θ→M and f :M→ R. As before, we can rewrite (2.12) as a least-squares problem

(2.13) ηnat
Ḣs = argmin

η∈Rp

∥∥∥∥ (L∗)† ∂ρf +

p∑
i=1

ηi Lζi

∥∥∥∥2

L2(Ω)

, L =

{
D̃s, s > 0

((D̃−s)∗)†, s < 0
.

Note that (2.13) shares the same form with (2.10).
Hs and Ḣs natural gradients proved extremely useful for obtaining fast algorithms for solving

the optimal transportation problem and related problems [20, 19, 18]. The authors in these papers
do not use the natural gradient descent formalism, but their methods are indeed Sobolev NGDs.

2.4. Fisher–Rao–Hellinger natural gradient. Here, we assume that ρ is a strictly positive
probability density function. We embed ρ in (M, g) = (L1(Rd), g) where Tρ(M) = L2

ρ−1(Rd) and

〈ζ, ζ̂〉g(ρ) =

∫
Rd

ζ(x)ζ̂(x)

ρ(x)
dx, ∀ζ, ζ̂ ∈ TρM.

This Riemannian metric is called the Fisher–Rao metric, and the distance induced by this metric is
the Hellinger distance: dH(ρ1, ρ2) ∝ ‖√ρ1 −√ρ2‖L2(Rd). Next, we will derive the natural gradient
flow based on the Fisher–Rao metric, first introduced by Amari in [2].

For a smooth ρ : Θ→M, we have that the tangent vectors are {ζi} in (2.6) but now considered
as elements of L2

ρ−1(Rd). Therefore, the information matrix in (2.5) becomes GFR(θ) ∈ Rp×p where

GFRij (θ) =

∫
Rd

∂θiρ(θ, x)∂θjρ(θ, x)

ρ(θ, x)
dx, i, j = 1, 2, . . . , p.

As before, GFR(θ) is in general different from GL
2
(θ), GH

s
(θ) and GḢ

s
(θ).

Furthermore, for a smooth function f :M→ R, we have that

lim
t→0

f(ρ+ tζ)− f(ρ)

t
=

∫
Rd

∂FRρ f ζ

ρ
dx,

10 L. NURBEKYAN, W. LEI, AND Y. YANG

and so from (2.7) we obtain
∂FRρ f = ρ ∂ρf.

Finally, for smooth ρ : Θ→M and f :M→ R, (2.2) leads to the Fisher–Rao natural gradient

(2.14) ηnatFR = argmin
η∈Rp

∥∥∥∥∂FRρ f +

p∑
i=1

ηiζi

∥∥∥∥2

L2
ρ−1 (Rd)

.

The L2 least-squares formulation is

(2.15) ηnatFR = argmin
η∈Rp

∥∥∥∥∂FRρ f
√
ρ

+

p∑
i=1

ηi
ζi√
ρ

∥∥∥∥2

L2(Rd)

= argmin
η∈Rp

∥∥∥∥(L∗)†∂ρf +

p∑
i=1

ηi Lζi

∥∥∥∥2

L2(Rd)

,

where Lζ = 1√
ρζ and (L∗)†∂ρf =

√
ρ ∂ρf .

2.5. W2 natural gradient. We first revisit the WNGD method [23]. Denoting by P(Rd) the set
of Borel probability measures on Rd, we first introduce the Wasserstein metric on the space P(Rd).
Furthermore, for ρ ∈ P(Rd) and a measurable function f : Rd → Rn, we denote by f]ρ ∈ P(Rn)
the probability measure defined by

(f]ρ)(B) = ρ(f−1(B)), ∀B ⊂ Rn Borel,

and call it the pushforward of ρ under f . Next, for any ρ1, ρ2 ∈ P(Rd), we denote Γ(ρ1, ρ2) as the
set of all possible joint measure π ∈ P(R2d) such that∫

R2d

(φ(x) + ψ(y)) dπ(x, y) =

∫
Rd
φ(x)dρ1(x) +

∫
Rd
ψ(y)dρ2(y)

for all (φ, ψ) ∈ L1(ρ1)× L1(ρ2). The 2-Wasserstein distance is defined as

W2(ρ1, ρ2) =

(
inf

π∈Γ(ρ1,ρ2)

∫
R2d

|x− y|2dπ(x, y)

) 1
2

.

Denoting by P2(Rd) the set of Borel probability measures with finite second moments, we have
that

(
P2(Rd),W2

)
is a complete separable metric space; see more details in [46, Chapters 7] and

[5, Chapters 7]. More intriguingly, one can build a Riemannian structure on
(
P2(Rd),W2

)
. Our

discussion is formal and we refer to [46, Chapters 8] and [5, Chapters 8] for rigorous treatments.
In short, tangent vectors in

(
P2(Rd),W2

)
are the infinitesimal spatial displacements of minimal

kinetic energy. More specifically, for a given ρ ∈ P2(Rd), we define the tangent space, TρP2(Rd), as
a set of all maps v ∈ L2

ρ(Rd;Rd) such that

(2.16) ‖v + w‖L2
ρ(Rd;Rd) ≥ ‖v‖L2

ρ(Rd;Rd), ∀w ∈ L2
ρ(Rd;Rd) s.t. ∇ · (wρ) = 0,

where L2
ρ(Rd;Rd) denotes the ρ-weighted L2 space. When ρ = 1, it reduces to the standard L2.

The divergence equation above is understood in the sense of distributions; that is,∫
Rd
∇φ(x) · w(x) ρ(x)dx = 0, ∀φ ∈ C∞c (Rd).

If we think of ρ as a fluid density, then an infinitesimal displacement dx
dt = ẋ = v(x) leads to an

infinitesimal density change given by the continuity equation

(2.17)
∂ρ

∂t
= −∇ · (vρ).

EFFICIENT NATURAL GRADIENT DESCENT METHODS 11

Therefore, for a given w such that ∇ · (wρ) = 0, we have that both ẋ = v(x) and ẋ = v(x) + w(x)
lead to the same continuity equation (2.17). Therefore, the evolution of the density is insensitive
to the divergence-free vector fields, and we project them out leaving only a unique vector field with
the minimal kinetic energy. The kinetic energy of a vector field v is then defined as

‖v‖2L2
ρ(Rd;Rd) =

∫
Rd
|v(x)|2ρ(x)dx.

For a given evolution t 7→ ρ(t, ·), such a “distilled” vector field v is unique and incorporates critical
geometric information on the spatial evolution of ρ.

Next, we define a Riemannian metric by

〈v, v̂〉g(ρ) =

∫
Rd
v(x) · v̂(x) ρ(x)dx, v, v̂ ∈ TρP2(Rd).

Furthermore, a mapping θ ∈ Θ 7→ ρ(θ, ·) ∈ P(Rd) is differentiable if for every θ ∈ Θ, there exists a
set of bases {vi(θ)} ⊂ TρP2(Rd) such that

(2.18) lim
t→0

W2 (ρ(θ + tη), (I + t
∑p

i=1 ηivi(θ))]ρ(θ))

t
= 0, ∀η ∈ Rp,

where I is the identity map. Thus,

(2.19)
{
v1, v2, · · · , vp

}
=
{
∂Wθ1 ρ, ∂

W
θ2 ρ, · · · , ∂Wθp ρ

}
,

are the tangent vectors in (2.1) for the W2 metric. Thus, the information matrix in (2.5) becomes
GW (θ) ∈ Rp×p where

GWij (θ) =

∫
Rd
vi(x) · vj(x) ρ(x)dx, i, j = 1, 2, . . . , p.

For f : P2(Rd)→ R, the Wasserstein gradient at ρ is then ∂Wρ f(ρ) ∈ TρP2(Rd), such that

(2.20) lim
t→0

f ((I + tv)]ρ)− f(ρ)

t
=

∫
Rd
∂Wρ f(ρ)(x) · v(x) ρ(x)dx, ∀v ∈ TρP(Rd).

Thus, for a smooth ρ : Θ→ P2(Rd) and f : P2(Rd)→ R, the W2 NGD direction for θ is given by

(2.21) ηnatW2
= argmin

η∈Rp

∥∥∥∥∂Wρ f +

p∑
i=1

ηivi

∥∥∥∥2

L2
ρ(Rd;Rd)

.

As seen in (2.6), the L2 derivatives and gradients are typically easier to calculate. Here, we dis-
cuss the relations between the L2 and W2 metrics that are useful for calculating the W2 derivatives
and gradients, i.e., {vi} and ∂Wρ f . We formulate the main conclusions in Proposition 2.2.

Proposition 2.2. Let {ζi} and {vi} follow (2.6) and (2.19), respectively. The ∂ρf and {ζi}
in (2.8) relate to the ∂Wρ f and {vi} in (2.21) as follows.

(2.22) ∂Wρ f = ∇∂ρf,

(2.23) vi(θ) = argmin
v

{
‖v‖2L2

ρ(θ)
(Rd;Rd) : −∇ · (ρ(θ)v) = ζi(θ)

}
, i = 1, . . . , p.

12 L. NURBEKYAN, W. LEI, AND Y. YANG

Informal derivation. Given a vector field v and a small t > 0, we have that I+tv is a first-order
approximation of the trajectory below where I is the identity function. Note that in Lagrangian
coordinates, ẋ = v(x). Thus, from the continuity equation (2.17), we have that

(2.24) (I + tv)]ρ = ρ− t ∇ · (ρv) + o(t).

Recall that ζi = ∂θiρ and vi = ∂Wθi ρ. Using this observation together with (2.6) and (2.18), we have

ρ(θ + tη) = ρ(θ) + t

p∑
i=1

ηiζi(θ) + o(t),

ρ(θ + tη) = ρ(θ)− t
p∑
i=1

ηi∇ · (ρ(θ)vi(θ)) + o(t),

for all η ∈ Rp. By comparing the above two equations, we have

(2.25) −∇ · (ρ(θ)vi(θ)) = ζi(θ), 1 ≤ i ≤ p.

After taking (2.16) into account, we obtain (2.23).
Next, we establish a connection between ∂ρf and ∂Wρ f . Combining (2.7), (2.20), (2.24)-(2.25),∫

Rd
∂Wρ f(ρ)(x) · v(x)ρ(x)dx = −

∫
Rd
∂ρf(ρ)(x)∇ · (ρ(x)v(x)) dx =

∫
Rd
∇∂ρf(ρ)(x) · v(x) ρ(x)dx,

for all v ∈ TρP2(Rd). Hence, we obtain (2.22).

Similar to previous cases, we want to turn (2.21) into an unweighted L2 formulation. Using
results in Proposition 2.2, we know that the Wasserstein tangent vectors at ρ are velocity fields of
minimal kinetic energy in L2

ρ(Rd;Rd). We first perform a change of variables

ṽi =
√
ρ vi, i = 1, . . . , p,

where the set of {vi} follows (2.19). As a result, for each i = 1, . . . , p, (2.23) reduces to

(2.26) ṽi(θ) = argmin
{
‖ṽ‖2L2(Rd;Rd) : Bṽ = ζi(θ)

}
, where Bṽ = −∇ ·

(√
ρ(θ) ṽ

)
.

We then have ṽi = B†ζi for i = 1, . . . , p. Denote the adjoint operator of B as B∗. Note that
B∗η =

√
ρ∇η. Combining these observations with Proposition 2.2, formulation (2.21) becomes

ηnatW2
= argmin

η∈Rp

∥∥∥∥√ρ∇∂ρf +

p∑
i=1

ηiṽi

∥∥∥∥2

L2(Rd;Rd)

= argmin
η∈Rp

∥∥∥∥B∗∂ρf +

p∑
i=1

ηiB
†ζi

∥∥∥∥2

L2(Rd;Rd)

= argmin
η∈Rp

∥∥∥∥(L∗)†∂ρf +

p∑
i=1

ηiLζi

∥∥∥∥2

L2(Rd;Rd)

, where L = B†.

(2.27)

We have reformulated the W2 NGD as a standard L2 minimization (2.27).

Remark 2.3. Note that Wasserstein natural gradient is closely related to the Ḣ−1 natural gra-
dient presented in Subsection 2.3. Indeed, taking s = −1 in (2.13) we obtain that

ηnat
Ḣ−1 = argmin

η∈Rp
‖∇∂ρf +

p∑
i=1

ηi(∇∗)†ζi‖2L2(Ω),

EFFICIENT NATURAL GRADIENT DESCENT METHODS 13

which matches (2.27) except that the weighted divergence operator B defined in (2.26) is replaced
with the unweighted divergence operator −∇· = ∇∗. When ρ(θ) ≡ 1, these two operators coincide.

In principle, one may consider NGDs generated by the generalized operator

Bkṽ = −∇ ·
(
ρ(θ)kṽ

)
, L = (Bk)

†,

where the case k = 0 corresponds to the Ḣ−1 natural gradient and k = 1/2 corresponds to the W2

NGD. The term ρk is often referred to as mobility in gradient flow equations [26].

Remark 2.4. NGDs based upon the L2 norm (2.8), the Hs norm (2.9), the Ḣs norm (2.12), the
Fisher–Rao metric (2.14) and the W2 metric (2.21) are similar in form but equipped with different
underlying metric space (M, g) for ρ. All of them can be reduced to the same common form but
with a different L operator; see (2.8), (2.10), (2.13), (2.15) and (2.27), respectively. As a result, we
expect that they may perform differently in the optimization process as NGD methods, which we
will see later from numerical examples in Section 4.

2.6. Gauss–Newton algorithm as an L2 natural gradient. Next, we give an example to show
that the Gauss–Newton method, a popular optimization algorithm [37], can be seen as an NGD
method. More discussions on this connection can be found in [31]. Assume that f measures the
least-squares difference between the model ρ(x; θ) and the reference ρ∗(x) distributions; that is,

(2.28) f(ρ(θ)) =
1

2

∫
Ω
|ρ(x; θ)− ρ∗(x)|2dx,

where Ω is the spatial domain. Thus, the problem of finding the parameter θ becomes

inf
θ
f(ρ(θ)) = inf

θ

1

2

∫
Ω
|ρ(x; θ)− ρ∗(x)|2dx = inf

θ

1

2

∫
Ω
|r(x; θ)|2dx, r(x; θ) = ρ(x; θ)− ρ∗(x).

We will denote ρ(x; θ) as ρ(θ) and r(x; θ) as r(θ).
The Gauss–Newton (GN) algorithm [37] is one popular computational method to solve this

nonlinear least-squares problem. In the continuous limit, the algorithm reduces to the flow

(2.29) θ̇ = ηGN = argmin
η∈Rp

∥∥∥∥∥r(θ) +

p∑
i=1

∂θir(θ)ηi

∥∥∥∥∥
2

L2(Ω)

= argmin
η∈Rp

∥∥∥∥∥ρ(θ)− ρ∗ +

p∑
i=1

∂θiρ(θ)ηi

∥∥∥∥∥
2

L2(Ω)

where we choose a mininal-norm η if there are multiple solutions. The algorithm is based on a
first-order approximation of the residual term r(θ + η) = r(θ) +

∑p
i=1 ∂θir(θ)ηi + o(η).

A key observation is that (2.29) is precisely the L2 natural gradient flow. Indeed, we have that

lim
t→0

f(ρ+ tζ)− f(ρ)

t
=

∫
Ω

(ρ(θ)− ρ∗) ζ(x)dx,

and therefore ∂ρf(ρ) = ρ(θ)− ρ∗. As a result, (2.8) reduces to (2.29) precisely.
The convergence rate of the GN method is between linear and quadratic based on various

conditions [37]. Typically, the method is viewed as an alternative to Newton’s method if one aims
for faster convergence than GD but does not want to compute/store the whole Hessian.

Remark 2.5. The L2 natural gradient flow perspective of interpreting the GN algorithm sug-
gests that mature numerical techniques for the GN algorithm are also applicable to general NGD
methods, including those we introduced earlier in Section 2. For further connections between GN
algorithms, Hessian-free optimization and NGD see discussions and references in [44, 38, 32, 31].

14 L. NURBEKYAN, W. LEI, AND Y. YANG

Remark 2.6. All natural gradient methods introduced in this section can be formulated as
ηnat = argminη∈Rp ‖(L∗)†∂ρf +

∑p
i=1 ηi Lζi‖2L2 , while different metric space for ρ gives rise to

different operator L. The computational complexity of approximating L and (L∗)† determines the
cost of implementing a particular NGD method. In general, L2, Hs and Ḣs NGDs are easier to
implement as L and (L∗)† do not depend on ρ, and thus can be re-used from iteration to iteration
once computed. On the other hand, for Fisher–Rao and Wasserstein NGDs, L is ρ-dependent. If
we have access to ρ directly, the Fisher–Rao information matrix only involves a diagonal scaling
by 1/ρ compared to the L2 information matrix. If we only have access to ρ through an empirical
distribution, there are also very efficient methods of estimating GFR; see [31]. In contrast, the
WNGD is the most expensive among all examples discussed in Section 2. Next, in Section 3, we
will see that there are still efficient numerical methods to mitigate the computational challenges.

3. General computational approach. In this section, we discuss our general strategy to cal-
culate the NGD directions. As mentioned earlier, our approach is based on efficient least-squares
solvers since the problem of finding the NGD direction can be formulated as (2.2). In particular,
we will introduce strategies when the tangent vector ∂θρ cannot be obtained explicitly, which is
the case for large-scale PDE-constrained optimization problems. We will first describe the general
strategies and then explain how to apply these techniques to different types of natural gradient
discussed in Section 2. We will work in the discrete setting hereafter.

By slightly abusing the notation, we assume that ρ : Θ → Rk is a proper discretization of
θ 7→ ρ(θ) while Θ ⊆ Rp. Similarly, let f : Rk → R be a suitable discretization of ρ 7→ f(ρ). Hence,
the standard finite-dimensional gradient and Jacobian, ∂ρf ∈ Rk and ∂θρ ∈ Rk×p, are discretizations
of their continuous counterparts discussed in Subsection 2.1. In particular, we denote the Jacobian

(3.1) Z = (ζ1 ζ2 · · · ζp) = ∂θρ, where ζj = ∂θjρ.

Without loss of generality, we always assume k > p. That is, we have more data than parameters.

3.1. A unified framework. For numerical computation, our main proposal is to translate the
general formula (2.2) and (2.4) for the NGD direction into a discrete least-squares formulation,
given any Riemannian metric space (M, g).

Based on (2.8), the discrete L2 natural gradient problem reduces to the least-squares problem

ηnat = argmin
η∈Rp

‖∂ρf + Zη‖22.

As we have seen in Section 2, besides L2, the computation of the Hs, Ḣs, Fisher–Rao, and WNGD
directions can also be formulated as a least-squares problem

(3.2) ηnatL = argmin
η∈Rp

∥∥(L>)†∂ρf + LZη
∥∥2

2
= argmin

η∈Rp

∥∥(L>)†∂ρf + Y η
∥∥2

2
, where Y = LZ,

for a matrix L representing the discretization of the continuous operator L for different metric
spaces as discussed in Section 2. We regard (3.2) as a unified framework since changing the metric
space for the natural gradient only requires changing L while the other components remain fixed.

Note that one can compute the standard gradient ∂θf = ∂θρ
>∂ρf = Z>∂ρf by chain rule.

From (3.2), we can also obtain the common formulation for the NGD as

ηnatL =− (Z>L>LZ)−1(Z>L>(L>)†∂ρf) = −(Y >Y)−1(Z>∂ρf)

=− (Y >Y)−1∂θf = −G−1
L ∂θf,

(3.3)

where GL = Y >Y is the corresponding information matrix defined in (2.5).

EFFICIENT NATURAL GRADIENT DESCENT METHODS 15

Remark 3.1. The unified framework (3.2) is general and applies to cases beyond NGDs discussed
in Section 2. For ρ in a metric space (M, g) with a corresponding tangent space TρM, we have

〈ζ1, ζ2〉g(ρ) ≈ ~ζ1
>
Agρ

~ζ2, ∀ζ1, ζ2 ∈ TρM,

where ~ζ1, ~ζ2 denote the discretized ζ1, ζ2. A proper discretization that preserves the metric structure
should yield a symmetric positive definite matrix Agρ that admits decomposition Agρ = L>L. As a
result, the discretization of (2.4) turns into the same formula as (3.2):

ηnatL = −(Z>AgρZ)−1(Z>∂ρf) = −(Z>L>LZ)−1(Z>L>(L>)†∂ρf)

= argmin
η∈Rp

∥∥(L>)†∂ρf + Y η
∥∥2

2
, where Y = LZ.

The concrete form of L will depend on the specific metric space (M, g).

Next, we will first assume that L is given and discuss how to compute ηnatL provided whether
the Jacobian Z is available or not; see Subsection 3.2 and Subsection 3.3. Later in Subsection 3.4,
we will comment on obtaining the matrix L based on the natural gradient examples in Section 2.

3.2. Z available. When Z is available, there are two main methods to compute ηnatL .
One may follow (3.3) by first constructing the information matrix GL = Y >Y and then com-

puting its inverse. This is a reasonable method when the number of parameters, i.e., p, is small,
and GL is invertible. However, if GL is singular or has bad conditioning, it is more advantageous
to compute ηnatL following (3.2). Note that the condition number of GL can be nearly the square
of the condition number of L, making it more likely to suffer from numerical instabilities.

The second and also our recommended approach is to solve the least-squares problem (3.2).
We may utilize the QR factorization to do so [14]. Assume that Y = LZ has full column rank. Let
Y = QR where Q has orthonormal columns and R is an upper triangular square matrix. Thus,

(3.4) ηnatL = −Y †(L>)†∂ρf = −R−1Q>(L>)†∂ρf.

The additional computational cost of evaluating ηnatL after the QR decomposition is the backward
substitution to evaluate R−1 instead of inverting R directly.

If the given model ρ(θ) allows us to write down how ρ depends on θ analytically, then the Jaco-
bian ∂θρ is readily available. In such cases, we can directly solve (3.2) using the QR decomposition
to obtain the NGDs; see Subsection 4.1 for a Gaussian mixture example.

We summarize the algorithm when the Jacobian Z and the matrices L, (L>)† are available;
see Subsection 3.4 for how to obtain L and (L>)† for examples presented in Section 2 and Appen-
dix B.2 for discussions when Y = LZ is rank-deficient.

Algorithm 3.1 Compute the NGD direction given Z, L, (L>)† and ∂ρf .

1: Compute Y = LZ.
2: Perform economy-size QR factorization: [Q,R] = qr(Y).
3: Compute the NGD direction ηnatL = −R−1Q>(L>)†∂ρf .

3.3. Z unavailable. Often, the model ρ(θ) is not available analytically, but the relationship
between ρ and θ is given implicitly via solutions of a system, e.g., a PDE constraint,

(3.5) h(ρ, θ) = 0,

for some smooth h : Rk × Rp → Rk such that det(∂ρh) 6= 0. In such cases, the Jacobian Z = ∂θρ
in (3.1) is not readily available and has to be computed or implicitly evaluated.

16 L. NURBEKYAN, W. LEI, AND Y. YANG

3.3.1. The implicit function theorem and adjoint-state method. Based on the first-order
variation of (3.5), the most direct option to proceed is to apply the implicit function theorem

(3.6) ∂ρh ∂θρ = ∂ρh Z = −∂θh.

The above equation consists of p linear systems in k variables. If ∂ρh has a simple format, or
the size of θ is not too large, it could still be computationally feasible to first obtain Z = ∂θρ by
solving (3.6), and then follow strategies in Subsection 3.2 to compute the NGD.

However, if p is large, a more efficient option is to use methods based on the so-called adjoint-
state method [40]. Note that Z is the rate of change of the full state ρ with respect to θ. Thus, if
we only need the rate of change of ρ along a specific vector ξ ∈ Rk, we do not need the whole Z;
instead, we need ξ>Z which can be calculated by solving only one linear system for each ξ.

Indeed, for a given ξ ∈ Rk, let us consider the adjoint equation

(3.7) λ>ξ ∂ρh = ξ> ⇐⇒ (∂ρh)> λξ = ξ.

Combining (3.6) and (3.7), we obtain that

(3.8) Z>ξ = Z> (∂ρh)> λξ = −∂θh>λξ.

The vector λξ in (3.7) is called the adjoint variable corresponding to the given vector ξ.
Here is an important example where we do not need the full Z. If we choose ξ = ∂ρf ∈ Rk,

then (3.8) gives the standard gradient

(3.9) ∂θf(ρ(θ)) = ∂θρ
>∂ρf = Z>∂ρf = −∂θh> λξ,

where λξ is the solution to (3.7) with ξ = ∂ρf ∈ Rk. This is a widely used method to efficiently eval-
uate the gradient of a large-scale optimization in solving PDE-constrained optimization problems
originated from optimal control and computational inverse problems [40].

Next, we will explain in detail how to harness the power of the adjoint-state method to evaluate
the general NGD directions through iterative methods.

3.3.2. Krylov subspace methods. Given an arbitrary vector η ∈ Rp, we may evaluate

(3.10) GL η = Z>L>LZ η

through the adjoint-state method even if we cannot access the information matrix GL since the
Jacobian Z is unavailable directly. Let ρ̂ ∈ Rk be an arbitrary vector, and consider the following
constrained optimization problem [34]

(3.11) min
θ
J(ρ(θ)) = ρ>ρ̂, s.t. h(ρ(θ), θ) = 0.

Note that this objective function J(ρ(θ)) in (3.11) is different from the main objective function (1.1)
but with the same constraint (3.5). A direct calculation reveals that the gradient of J(ρ(θ)) with
respect to the parameter θ is Z>ρ̂. Therefore, if we set ρ̂ = L>LZη, the gradient

∂θJ(ρ(θ)) = Z>ρ̂ = Z>L>LZ η = GL η,

which is exactly what we aim to compute in (3.10).
From the constraint h(ρ(θ), θ) = 0 and its first-order variation (3.6), we have

∂ρh Z η + ∂θh η = 0.

EFFICIENT NATURAL GRADIENT DESCENT METHODS 17

Thus, Z η can be obtained as the solution to a linear system with respect to γ:

(3.12) ∂ρh γ = −∂θh η.

Based on the adjoint-state method introduced in Section 3.3.1, we can compute the gradient as

∂θJ(ρ(θ)) = −∂θh> λ,

where λ satisfies the adjoint equation below with a given γ that solves (3.12),

(3.13) ∂ρh
>λ = ∂ρJ = ρ̂ = L>LZη = L>Lγ.

To sum up, with a fixed θ and the corresponding ρ(θ), we have an efficient way to evaluate the
linear action η 7→ GLη for any given η by three steps; see Algorithm 3.2.

Algorithm 3.2 Evaluate the linear action η 7→ GLη given an arbitrary vector η.

1: Given the implicit constraint h, solve the linear system ∂ρh γ = −∂θh η and obtain γ.
2: Given linear actions based on L and L>, solve the linear system ∂ρh

>λ = L>Lγ and obtain λ.
3: Evaluate −∂θh> λ, which equals to GL η.

Given the linear action η 7→ GLη, we need to solve the linear system

(3.14) GL η
nat
L = −∂θf(ρ(θ))

to find the NGD direction ηnatL . As seen in (3.9), we can obtain the right-hand side −∂θf(ρ(θ))
through the adjoint-state method. One may then solve for ηnatL through iterative linear solvers
based on the Krylov subspace methods [43], e.g., the conjugate gradient method. We summarize
all the steps above in Algorithm 3.3.

Algorithm 3.3 Compute the NGD direction when Z is not explicitly available.

1: Given the constraint h, solve the linear system (∂ρh)> λ = ∂ρf and obtain λ.
2: Compute the parameter gradient ∂θf(ρ(θ)) = ∂θρ

>∂ρf = −∂θh> λ.
3: Obtain the linear action η 7→ GLη following steps in Algorithm 3.2.
4: Use the conjugate gradient method to solve for ηnatL where GL η

nat
L = −∂θf(ρ(θ)).

One may use Algorithm 3.3 instead of Algorithm 3.1 when Z is available but the QR factoriza-
tion of Y = LZ is too costly, for instance, in some machine learning applications. Since “wall-clock”
time can be highly affected by the implementation and the computer specification, in Table 1, we
summarize the number of propagations per iteration among different methods [48]. For different
NGDs, the cost of the linear action γ 7→ L>Lγ varies, which we will discuss in Subsection 3.4.

3.4. Computation for natural gradient examples in Section 2. In Subsections 3.2 and 3.3,
we have shown how to compute the NGD direction ηnatL given Z is easily available or not. Both
strategies require the matrix L, which depends on the particular metric space for the natural
gradient. Next, we specify the form of L based on cases discussed in Section 2.

The L2 case in Subsection 2.1 corresponds to L = I, the k×k identity matrix, while the Fisher–
Rao–Hellinger natural gradient discussed in Subsection 2.4 corresponds to L = diag

(
1/
√
ρ
)
∈ Rk×k,

which incurs O(k) more flops per iteration compared to the L2 NGD method. For the Hs natural
gradient discussed in Subsection 2.2, L corresponds to proper discretization of Ds (for s > 0) and
((D−s)∗)† (for s < 0). Next, we give a few concrete examples. When s = 1, L = D1 = [I,∇]> and

18 L. NURBEKYAN, W. LEI, AND Y. YANG

Table 1: The number of propagations among different optimization methods.

GD NGD Newton’s Method

Forward propagation θ 7→ ρ(θ) 1 1 1

Backward propagation ξ 7→ ∂θρ
> ξ 1 1 2

Linearized forward propagation ω 7→ ∂θρω 0 1∗ 1
∗For NGD, different choice of metric affects the complexity of the linearized forward solve.

(L∗)† = D1((D1)∗D1)−1 = [I,∇]>(I − 4)−1. When s = −1, L = ((D̃−1)∗)† = [I,∇]>(I − 4)−1

while (L∗)† = [I,∇]>. Similarly, for the Ḣs natural gradient discussed in Subsection 2.3, L should
correspond to proper discretization of D̃s (for s > 0) and ((D̃−s)∗)† (for s < 0). For instance, when
s = 1, L = D̃1 = ∇, and (L∗)† = D̃1((D̃1)∗D̃1)−1 = ∇(−4)−1; when s = −1, L = ((D̃−1)∗)† =
∇(−4)−1 while (L∗)† = ∇. The symmetry between the cases of Hs/Ḣs and the cases of H−s/Ḣ−s,
∀s > 0, comes from the fact that they are dual Sobolev spaces. The computation of the natural
gradient based on the Hs and Ḣs metric can be efficiently computed. This is because there are
fast algorithms for discretizing and computing the actions of the gradient and (inverse) Laplacian
operators for periodic, Dirichlet and zero-Neumann boundary conditions in L and (L∗)† [12, 55].

Based on the unweighted reformulation (2.27), computing the W2 NGD discussed in Subsec-
tion 2.5 requires the discretization of L = B†. We can first discretize the differential operator B,
denoted as B, and then compute L = B†, which can be used no matter the Jacobian Z = ∂θρ is
explicitly given or implicitly provided through the constraint (3.5). As an example, we describe
how to obtain the matrix L for the WNGD (2.27) in Appendix B.1 based on a finite-difference dis-
cretization of the differential operator. In Remark 2.3, we commented that when ρ(x) is constant,
WNGD reduces to Ḣ−1-based NGD. However, in general, the computation of the WNGD is more
expensive than the Hs/Ḣs cases for two reasons. First, the information matrix G and the operator
L for the WNGD are ρ-dependent, so in every iteration of the NGD method, one has to re-compute
them, which incurs extra complexity. Second, as mentioned above, the computation of Hs/Ḣs

NGD can be done through fast Fourier, or discrete cosine transforms (depending on the domain).
It is, however, inapplicable to the Wasserstein case since it involves solving a weighted differential
equation. In Appendix B.1, we use QR factorization to obtain L = B† given B. We approximate B
using the finite-difference method, so B> is very sparse. Using a multifrontal multithreaded sparse
QR factoriazation [9], it has much better complexity than the conventional O(k3). We summarize
the observed computational costs of obtaining L and (L>)† for different NGD methods in Table 2.
See also Figure 1a for the computational time comparison among different metrics.

After obtaining L and (L>)†, the QR factorization of Y = LZ followed by computing the
natural gradient direction ηnatL based on (3.4) will incur O(kp2) flops if the Jacobian Z is available;
see Figure 1b for an observed computational time to obtain the NGD η among different metrics
for a case where Z is analytically available (see Section 4.1). When Z is not analytic, such as from
PDE (Section 4.3) or neural network models (Section 4.2), we will see that the cost in computing
NGDs among different methods is no longer dominated by the cost of computing L and (L>)†.

3.5. Extensions and variants. In this section, we briefly comment on several practical variants
of using the NGD method based on a particular choice of the data metric space.

3.5.1. A damped information matrix. If the discretized information matrixGL is rank deficient
or ill-conditioned, one may consider rank-revealing QR factorization; see Appendix B.2. As an
alternative approach, a damped information matrix in the form Gλ = λI + GL is often used for

EFFICIENT NATURAL GRADIENT DESCENT METHODS 19

Table 2: Summary of the observed computational costs for linear actions L and (L>)† in (3.2).

L2 Fisher–Rao Hs/Ḣs, s > 0 Hs/Ḣs, s < 0 W2

change over iteration 7 3 7 7 3

computing v 7→ Lv O(k) O(k) O(k) O(k log k) O(k1.25)

computing v 7→ (L>)†v O(k) O(k) O(k log k) O(k) O(k)

(a) Evaluate L and (L>)† linear actions (b) Compute NGD direction η

Figure 1: The observed wall clock time for evaluating v 7→ Lv and v 7→ (L>)†v linear actions (left)
and for computing one NGD direction η with a fixed p (right) based on different metrics.

numerical stability and to avoid extreme updates, where λ is the damping parameter. One notable
example is the Levenberg–Marquardt method as a damped Gauss–Newton method [44], while the
latter is equivalent to the L2 NGD in our framework; see Subsection 2.6.

Since the fundamental difference between GD and NGD lies in how one measures the distance
between the potential next iterate and the current iterate, the damped version corresponds to
choosing the next iterate based on a mixed metric from θ-domain and ρ-domain. Indeed, in the
implicit form (1.5) and (1.6), the damped version can be written as

(3.15) θl+1 = argmin
θ

{
f(ρ(θ)) +

λ dθ(θ, θ
l)2 + dρ(ρ(θ), ρ(θl))2

2τ

}
.

When dθ is the Euclidean metric on θ-domain, we obtain the identity matrix I in Gλ, but other
choices of damping metric can also be considered.

Alternatively, one can use another ρ-space metric to regularize instead of any metric on the
θ-space. For example, let dρ2 be the main natural gradient metric and dρ1 be the regularizing
natural gradient metric. The next iterate obtained in the implicit Euler scheme is given by

(3.16) θl+1 = argmin
θ

{
f(ρ(θ)) +

λ dρ1(ρ(θ), ρ(θl))2 + dρ2(ρ(θ), ρ(θl))2

2τ

}
,

while the damping parameter λ determines the strength of regularization. We comment that the
H1 natural gradient can be seen as the Ḣ1 natural gradient damped by the L2 natural gradient.

20 L. NURBEKYAN, W. LEI, AND Y. YANG

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)

2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

std GD trace

initial point

(a) GD

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)

2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

L2 Natural GD trace

initial point

(b) L2 NGD

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)

2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

Fisher-Rao Natural GD trace

initial point

(c) FR NGD

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)

2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

H1 seminorm Natural GD trace

initial point

(d) H1 NGD

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)

2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

H1 seminorm Natural GD trace

initial point

(e) H−1 NGD

−2 0 2 4 6
µ1: x direction

−2

0

2

4

6

µ
1
:

y
di

re
ct

io
n

(5.0, 3.0)
2.071

2.107

2.143 2.179

2.215

2.251

2.288

2.324

2.360

2.396

2.432

2.469

2.505

2.541

2.577

2.613

2.649

2.649

2.686

2.686

2.722

2.758

2.794

2.830

2.866

2.903

2.939

2.975

3.011

3.
04

7

3
.0

8
3

3.120

3.156

3.1
92

3.228

3.264

3.301

3.
33

7

3.373

3.409

3.445

W2 Natural GD trace

initial point

(f) W2 NGD

Figure 2: Gaussian mixture example: level sets, vector fields and convergent paths using GD and
different NGD methods to invert µ1. All algorithms start from initial guess (5, 3).

3.5.2. Mini-batch NGD. Similar to mini-batch GD, one can also use mini-batch NGD by
computing the natural gradient of the objective function with respect to a subset of the data ρ.
Consider a random sketching matrix S ∈ Rk′×k, k′ < k. Each row of S has at most one nonzero
entry 1. Thus, Sρ ∈ Rk′ is the mini-batch data. The objective function also becomes f(Sρ(θ)).

The mini-batch NGD can find the next iterate θl+1 implicitly through

θl+1 = argmin
θ

{
f(Sρ(θ)) +

dρ(Sρ(θ), Sρ(θl))2

2τ

}
,

where dρ is the ρ-space metric. It is equivalent to changing the data metric from dρ(·, ·) to a random
pseudo metric dρ(S·, S·). The information matrix and the NGD direction are

G = Z>S>L>LSZ, η = G−1∂θf(Sρ(θ)),

where L depends on dρ(S·, S·) and Z is the Jacobian. Note that S changes over iterations.
Also, we remark that SZ ∈ Rk′×p can be seen as a random sketching of the Jacobian matrix Z.

If Z is low-rank, the column space of SZ ∈ Rk′×p can be a close approximation to the column space
of Z, but SZ is much smaller in size. See Appendix B.4 where similar techniques from random
linear algebra can help explore the column space of Z and further reduce the computational cost.

4. Numerical results. In this section, we present three optimization examples to illustrate the
effectiveness of our computational strategies for NGD methods. We first present the parameter
reconstruction of a Gaussian mixture model where the Jacobian ∂θρ is analytically given. Our
second example is to solve the 2D Poisson equation using the physics-informed neural networks
(PINN) [42], where the Jacobian ∂θρ can be numerically obtained through automatic differentia-
tion. We then present a large-scale waveform inversion, a PDE-constrained optimization problem
where the Jacobian ∂θρ is not explicitly given. Using our computational strategy proposed in Sub-
section 3.3, we can efficiently implement the NGD method based on a general metric space. The
first example shows that various (N)GD methods converge to different stationary points of a non-
convex objective function. The last two tests illustrate that different (N)GD methods have various
convergence rates. Both phenomena are interesting as they indicate that one may achieve global
convergence or faster convergence by choosing a proper metric space (M, g) that fits the problem.

4.1. Gaussian mixture model. Consider the Gaussian mixture model, which assumes that
all the data points are generated from a mixture of a finite number of normal distributions with
unknown parameters. Consider a probability density function ρ(x; θ) : Rd 7→ R+ where

ρ(x; θ) = w1N (x;µ1,Σ1) + . . .+ wiN (x;µi,Σi) + . . .+ wkN (x;µk,Σk).

EFFICIENT NATURAL GRADIENT DESCENT METHODS 21

4.5 5.0 5.5 6.0 6.5 7.0
µ1: x direction

2.5

3.0

3.5

4.0

4.5

5.0

µ
1:

y
di

re
ct

io
n 0.129

0.134

0.138

0.143

0.148

0.153

0.1570.162
0.167

0.172

0.177

0.181
0.186

0.191

0.196
0.200

0.205

0.210

0
.2

1
5

(a) Standard gradient descent

4.5 5.0 5.5 6.0 6.5 7.0
µ1: x direction

2.5

3.0

3.5

4.0

4.5

5.0

µ
1:

y
di

re
ct

io
n 0.129

0.134

0.138

0.143

0.148

0.153

0.1570.162
0.167

0.172

0.177

0.181
0.186

0.191

0.196
0.200

0.205

0.210

0
.2

1
5

(b) L2 natural gradient

4.5 5.0 5.5 6.0 6.5 7.0
µ1: x direction

2.5

3.0

3.5

4.0

4.5

5.0

µ
1:

y
di

re
ct

io
n 0.129

0.134

0.138

0.143

0.148

0.153

0.1570.162
0.167

0.172

0.177

0.181
0.186

0.191

0.196
0.200

0.205

0.210

0
.2

1
5

(c) W2 natural gradient

Figure 3: The local quadratic models of GD, L2 NGD and W2 NGD in the first several iterations.

The i-th Gaussian, denoted as N (x;µi,Σi) with the mean vector µi ∈ Rd and the covariance matrix
Σi ∈ Rd×d, has a weight factor wi ≥ 0. Note that

∑
iwi = 1. Here, θ could represent parameters

such as {wi}, {µi} and {Σi}. We formulate the inverse problem of finding the parameters as a
data-fitting problem by minimizing the least-squares loss f(ρ(θ)) on a compact domain Ω where
the objective function follows (2.28). Here, ρ∗ is the observed reference density function. Note that
the dependence between the state variable ρ and the parameter θ is explicit here. Thus, we can
compute the Jacobian ∂θρ analytically, and the numerical scheme follows Subsection 3.2.

We consider reference ρ∗(x) = 0.3N (x; (1, 3), 0.6I) + 0.7N (x; (3, 2), 0.6I) and the domain Ω =
[−2.75, 7.25]2. We fix µ2 and the weights to be incorrect and invert θ = µ1. That is, ρ(x; θ) =
0.2N (x; θ, 0.6I)+0.8N (x; (4, 3), 0.6I). Figure 2 shows the convergence paths of GD and L2, Fisher–
Rao, H1, H−1, W2 NGD methods under the initial guess (5, 3), which is chosen since it belongs to
different basins of attractions for different optimization methods. We choose the largest possible
step size such that the objective function monotonically decays. They are 0.3, 0.04, 0.8, 0.2, 0.2
and 3 for methods in Figure 2 from left to right. WNGD converges to the global minimum while
all other methods converge to local minima by taking different convergence paths.

We aim to gain better understanding regarding their different convergence behaviors. Given a
fixed l-th iterate, different algorithms find the (l+ 1)-th iterate, but based on different “principles”
nicely revealed in the proximal operators (1.5) and (1.6). Here, we use θl+1

std , θl+1
W2

, and θl+1
L2 to

denote the next iterates based on GD, L2 NGD and WNGD, respectively. We then have

θl+1
std = θl + argmin

h

{
∇θf>h+

1

2τ
h>h

}
≈ argmin

θ

{
f(ρ(θ)) +

|θ − θl|2
2τ

}
,

θl+1
L2 = θl + argmin

h

{
∇θf>h+

1

2τ
h>∂θρ

>∂θρ h

}
≈ argmin

θ

{
f(ρ(θ)) +

||ρ(θ)− ρ(θl)||22
2τ

}
,

θl+1
W2

= θl + argmin
h

{
∇θf>h+

1

2τ
h>(B†∂θρ)>B†∂θρ h

}
≈ argmin

θ

{
f(ρ(θ)) +

W 2
2 (ρ(θ), ρ(θl))

2τ

}
.

The above equations show that, locally, different (N)GD methods solve different quadratic problems
given the same step size τ . In Figure 3, we illustrate the level set of each quadratic problem for
which the minimum is selected as the next iterate. The level set of the same objective function
f(ρ(θ)) is shown in the background. Our observation aligns with the example in [8, Fig. 3].

4.2. Physics informed neural networks. Physics-informed neural networks (PINN) is a varia-
tional approach to solve PDEs with the solution parameterized by neural networks [42]. Here, as

22 L. NURBEKYAN, W. LEI, AND Y. YANG

(a) True solution (b) Loss decay vs. iteration number (c) Loss decay vs. wall clock time

Figure 4: (a): PINN example true solution; (b) loss function value decay in terms of the number
of iterations; (c) loss function value decay in terms of the wall clock time.

an example, we use PINN to solve the 2D Poisson equation on the domain Ω = [−1, 1]2,

−4u = φ, with u = ψ on ∂Ω,

where φ(x) = 2π2 sin(πx1) sin(πx2) + 18π2 sin(3πx1) sin(3πx2) and ψ(x) = 3, whose solution is
u(x) = sin(πx1) sin(πx2) + sin(3πx1) sin(3πx2) + 3, x = [x1, x2]>. The training loss function is

f(ρ(θ)) =
γ

N1

N1∑
i=1

|4ρ(xi, θ) + φ(xi)|2 +
2− γ
N2

N2∑
j=1

|ρ(xj , θ)− ψ(xj)|2,

where ρ(x, θ) is a feed-forward neural network of shape (2, 20, 30, 20, 1) with the hyperbolic tangent
tanh as the activation function. The parameters are the weights and biases, denoted by θ. We
use N1 = 2304 collocation points in the domain interior and N2 = 196 points on ∂Ω, both equally
spaced. We set γ = 0.01 to balance the two terms in the loss function. For a weight matrix of size
d1-by-d2, we initialize its entries i.i.d. following the normal distribution N (0, 2

d1+d2
). All biases are

initialized as zero, except the one in the last layer, which is set to be 3. We fix the random seed to
ensure the same initialization for all optimization algorithms of interests.

We train PINN using GD and different NGDs based on metrics discussed in Section 2. We
use back-tracking line search to select the step size (learning rate) in (N)GD algorithms. The
true solution is shown in Figure 4a, while Figures 4b and 4c show the loss value decay with
respect to the number of iterations and the wall clock time, respectively. We can see that all
NGD methods are faster than GD, while H1 and Ḣ1-based NGDs yield the fastest convergence
in both comparisons. Neural networks can suffer from slow convergence on the high-frequency
parts of the residual due to its intrinsic low-frequency bias [53]. The H1/Ḣ1-based NGDs enforce
extra weights on the oscillatory components of the Jacobian, giving faster convergence than L2

NGD. In contrast, H−1/Ḣ−1 NGDs bias towards the smooth components of the Jacobian, which
delay the convergence of high-frequency residuals and thus the overall convergence. As discussed
in Remark 2.6, WNGD requires a ρ-dependent matrix L, which increases the wall clock time per
iteration. Interestingly, when the loss value becomes small, WNGD has a faster decay rate than
H−1/Ḣ−1 NGDs despite being asymptotically equivalent in spectral properties (see Remark 2.3),
demonstrating the potential benefits of having a state-dependent information matrix G(θ).

EFFICIENT NATURAL GRADIENT DESCENT METHODS 23

4.3. Full waveform inversion. Finally, we present a full waveform inversion (FWI) example
where the Jacobian is not explicitly given. As a PDE-constrained optimization, the dependence
between the data and the parameter is implicitly given through the scalar wave equation

(4.1) m(x)utt(x, t) +4u(x, t) = s(x, t),

where s(x, t) is the source term and (4.1) is equipped with the initial condition u(x, 0) = ut(x, 0) = 0
and an absorbing boundary condition to mimic the unbounded domain.

After discretization, the unknown function m(x) becomes a finite number of unknowns, which
we denote by θ for consistency. Unlike the Gaussian mixture model, the size of θ in this example
is large as p = 36720. We obtain the observed data ρr = u(xr, t) at a sequence of receivers {xr},
for r = 1, . . . , nr. The least-squares objective function is

(4.2) f(ρ(θ)) =
1

2

ns∑
i=1

nr∑
r=1

‖ρ∗i,r − ρi,r(θ)‖22,

where ρ∗ is the observed reference data, and i is the source term index to consider inversions with
multiple sources {si(x, t)} as the right-hand side in (4.1). In our test, ns = 21 and nr = 306.

The true parameter is presented in Figure 5a. We remark that minimizing (4.2) with the
constraint (4.1) is a highly nonconvex problem [47]. We avoid dealing with the nonconvexity by
choosing a good initial guess; see Figure 5b. One may also use other objective functions such as the
Wasserstein metric to improve the optimization landscape [11]. We follow Subsection 3.3 to carry
out the implementation for various NGD methods since the Jacobian ∂θρ is not explicitly given, and
the adjoint-state method has to be applied based on (4.1). The step size is chosen based on back-
tracking linear search. We use the same criteria for all algorithms. The GD (see Figure 5c) converges
slowly compared to the NGD methods, while Ḣ1, L2, Ḣ−1 and W2 NGDs are in descending order
in terms of image resolution measured by both the objective function and the structural similarity
index measure (SSIM); see Figure 5d-5h. The convergence history in Figure 5h shows the objective
function decay with respect to the number of propagations (see Table 1). For FWI, each propagation
corresponds to one wave equation (PDE) solve with different source terms. Note that wavefields
are not naturally probability distributions. Thus, when we implement the W2 natural gradient, we
normalize the data to be probability densities following [10, 11]. As we have discussed in Remark 2.3,
the W2 and Ḣ−1 natural gradients are closely related, which are also reflected in this numerical
example as the reconstructions in Figures 5e and 5f are very similar. All the tests shown in Figure 5
directly demonstrate that NGDs are typically faster than GD, and more importantly, the choice of
the metric space (M, g) for NGD (see (2.2)) also has a direct impact on the convergence rate.

5. Conclusions. Inspired by the natural gradient descent (NGD) method in learning theory,
we develop efficient computational techniques for PDE-based optimization problems for generic
choices of the “natural” metric. NGD exploits the geometric properties of the state space, which is
particularly appealing for PDE applications that have rich flexibility in choosing the metric spaces.

Handling the high-dimensional parameter space and state space are the two main computational
challenges of NGD methods. Here, we propose numerical schemes to tackle the high-dimensional pa-
rameter space when the forward model, with a relatively low-dimensional state space, is discretized
on a regular grid. Our approach relies on reformulating the problem of finding NGD directions as
standard L2-based least-squares problems on the continuous level. After discretization, the NGD
directions can be efficiently computed by numerical linear algebra techniques. We discuss both
explicit and implicit forward models by taking advantage of the adjoint-state method.

The second computational challenge of high-dimensional state space stands out for Sobolev and
Wasserstein NGDs. In this work, we apply finite differences on regular grids for low-dimensional

24 L. NURBEKYAN, W. LEI, AND Y. YANG

0 2 4 6 8

0

0.5

1

1.5

2

2.5

3

(a) true parameter (b) initial, SSIM= 0.31 (c) GD, SSIM= 0.44 (d) L2 NGD, SSIM= 0.58

(e) Ḣ−1 NGD, SSIM= 0.53 (f) W2 NGD, SSIM= 0.53 (g) Ḣ1 NGD, SSIM= 0.61 (h) convergence history

Figure 5: FWI example: (a) ground truth; (b) initial guess; (c)-(g) inversion results using GD
and NGDs based on the L2, Ḣ−1, W2 and Ḣ1 metrics after 400 PDE solves; (h) the history of
the objective function decay versus the number of propagations/PDE solves. SSIM denotes the
structural similarity index measure compared with (a). A bigger value means better similarity.

state space. On the one hand, when the state-space dimension is high, discretization on a regular
grid suffers from the curse of dimensionality, and other parameterizations have to be considered.
On the other hand, when the state variable is not given on a regular grid, there are other ways to
discretize those differential operators, which require more careful attention. For example, generative
models are push-forward mappings, representing probability measures in high-dimensional state
spaces by point clouds (samples). Applying the Sobolev and Wasserstein NGDs to state variables
in the form of empirical distributions will most likely require alternative discretization approaches
for differential operators, such as graph- or neural network-based methods.

A very interesting question is what the best “natural” metric in NGD should be. Regarding this,
we numerically investigated the convergence behaviors of GD and various NGD methods based on
different metric spaces. The empirical results indicate that the choice of the metric space in an NGD
not only can change the rate of convergence but also influence the stationary point where the iterates
converge, given a nonconvex optimization landscape. A rigorous understanding of the “best” metric
choice for a given problem is an important research direction. For maximum likelihood estimation
problems, the Fisher–Rao NGD is asymptotically Fisher-efficient; Sobolev NGDs (e.g., H1 and Ḣ1)
are suitable for solving optimal transport and mean-field game problems [20, 18, 27, 29]; when the
metric is induced by f and suitable conditions are met, the corresponding NGD is asymptotically
Newton’s method [30, 8, 31]. Despite these results, to our knowledge, there is no general framework
for a systematic derivation of the best natural gradient metric for a given problem.

It is reasonable to believe that as the topic matures, there will be an increasing necessity for
efficient techniques for computing NGD directions for a diverse set of problems and metrics. Hence,
in this paper, we choose to focus on a generic computational framework leveraging state-of-the-art
optimization techniques. Nonetheless, the geometric formalism considered here could be beneficial
for the theoretical understanding of the “best” metric choice. Indeed, as mentioned in [31, Sec. 15],

EFFICIENT NATURAL GRADIENT DESCENT METHODS 25

local approximation of the loss function cannot explain all global properties of NGD. The metric
in the ρ-space, on the other hand, can impact the global properties of f . More specifically, it might
convexify f [13, Appendix B] or make it Lipschitz, paving a way towards the analysis of the NGD
as a first-order method in the ρ-space. We find this line of research an intriguing future direction.

Finally, the full potential of randomized linear algebra techniques remains to be explored. We
discuss a mini-batch version of our algorithm in Subsection 3.5.2 and several low-rank approxima-
tion techniques in Appendices B.2 to B.4. Nevertheless, the success of randomized linear algebra
techniques for very high-dimensional problems warrants a more thorough investigation of the the-
oretical and computational aspects of these techniques adapted to our setting.

Acknowledgments. L. Nurbekyan was partially supported by AFOSR MURI FA 9550 18-1-
0502 grant. W. Lei was partially supported by the 2021 Summer Undergraduate Research Expe-
rience (SURE) at the Department of Mathematics, Courant Institute of Mathematical Sciences,
New York University. Y. Yang was partially supported by the National Science Foundation under
Award Number DMS-1913129. This work was done in part while Y. Yang was visiting the Simons
Institute for the Theory of Computing in Fall 2021. Y. Yang also acknowledges supports from
Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.

REFERENCES

[1] S.-i. Amari, Differential-geometrical methods in statistics, vol. 28, Springer Science & Business Media, 1985.
[2] S.-i. Amari, Natural gradient works efficiently in learning, Neural computation, 10 (1998), pp. 251–276.
[3] S.-i. Amari and A. Cichocki, Adaptive blind signal processing-neural network approaches, Proceedings of the

IEEE, 86 (1998), pp. 2026–2048.
[4] L. Ambrosio, E. Brué, and D. Semola, Lectures on optimal transport, Springer, 2021.
[5] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability

measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008.
[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, Society for Industrial and
Applied Mathematics, Philadelphia, PA, third ed., 1999.

[7] M. Arbel, A. Gretton, W. Li, and G. Montufar, Kernelized Wasserstein natural gradient, in International
Conference on Learning Representations, 2020.

[8] Y. Chen and W. Li, Optimal transport natural gradient for statistical manifolds with continuous sample space,
Information Geometry, 3 (2020), pp. 1–32.

[9] T. A. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization,
ACM Transactions on Mathematical Software (TOMS), 38 (2011), pp. 1–22.

[10] B. Engquist and Y. Yang, Seismic inversion and the data normalization for optimal transport, Methods and
Applications of Analysis, 26 (2019), pp. 133–148.

[11] B. Engquist and Y. Yang, Optimal transport based seismic inversion: Beyond cycle skipping, Communications
on Pure and Applied Mathematics, (2021).

[12] D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, IMA Journal of Numerical
Analysis, 40 (2020), pp. 1994–2018.

[13] W. Gangbo and A. R. Mészáros, Global well-posedness of master equations for deterministic displacement
convex potential mean field games, Communications on Pure and Applied Mathematics, 75 (2022), pp. 2685–
2801.

[14] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins studies in the mathematical sciences,
Johns Hopkins University Press, Baltimore, MD, 1996.

[15] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions, SIAM review, 53 (2011), pp. 217–288.

[16] N. D. Heavner, Building rank-revealing factorizations with randomization, PhD thesis, University of Colorado
at Boulder, 2019.

[17] M. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines,
Communications in Statistics - Simulation and Computation, 19 (1990), pp. 433–450.

[18] M. Jacobs, W. Lee, and F. Léger, The back-and-forth method for Wasserstein gradient flows, ESAIM:
Control, Optimisation and Calculus of Variations, 27 (2021), p. 28.

26 L. NURBEKYAN, W. LEI, AND Y. YANG

[19] M. Jacobs and F. Léger, A fast approach to optimal transport: The back-and-forth method, Numerische
Mathematik, 146 (2020), pp. 513–544.

[20] M. Jacobs, F. Léger, W. Li, and S. Osher, Solving large-scale optimization problems with a convergence
rate independent of grid size, SIAM Journal on Numerical Analysis, 57 (2019), pp. 1100–1123.

[21] W. Li, A. T. Lin, and G. Montúfar, Affine natural proximal learning, in Geometric Science of Information,
F. Nielsen and F. Barbaresco, eds., Cham, 2019, Springer International Publishing, pp. 705–714.

[22] W. Li, S. Liu, H. Zha, and H. Zhou, Parametric Fokker–Planck equation, in Geometric Science of Information,
F. Nielsen and F. Barbaresco, eds., Springer International Publishing, 2019, pp. 715–724.

[23] W. Li and G. Montúfar, Natural gradient via optimal transport, Information Geometry, 1 (2018), pp. 181–214.
[24] W. Li and J. Zhao, Wasserstein information matrix, arXiv preprint arXiv:1910.11248, (2019).
[25] A. T. Lin, W. Li, S. Osher, and G. Montúfar, Wasserstein proximal of GANs, in Geometric Science of

Information, F. Nielsen and F. Barbaresco, eds., Cham, 2021, Springer International Publishing, pp. 524–
533.

[26] S. Lisini, D. Matthes, and G. Savaré, Cahn–Hilliard and thin film equations with nonlinear mobility as
gradient flows in weighted-Wasserstein metrics, Journal of Differential Equations, 253 (2012), pp. 814–850.

[27] S. Liu, M. Jacobs, W. Li, L. Nurbekyan, and S. J. Osher, Computational methods for first-order nonlocal
mean field games with applications, SIAM Journal on Numerical Analysis, 59 (2021), pp. 2639–2668.

[28] S. Liu, W. Li, H. Zha, and H. Zhou, Neural parametric Fokker–Planck equation, SIAM Journal on Numerical
Analysis, 60 (2022), pp. 1385–1449.

[29] S. Liu and L. Nurbekyan, Splitting methods for a class of non-potential mean field games, Journal of Dynamics
and Games, 8 (2021), pp. 467–486.

[30] A. Mallasto, T. D. Haije, and A. Feragen, A formalization of the natural gradient method for general
similarity measures, in Geometric Science of Information, F. Nielsen and F. Barbaresco, eds., Cham, 2019,
Springer International Publishing, pp. 599–607.

[31] J. Martens, New insights and perspectives on the natural gradient method, Journal of Machine Learning Re-
search, 21 (2020), pp. 1–76.

[32] J. Martens and R. Grosse, Optimizing neural networks with Kronecker-factored approximate curvature, in
International conference on machine learning, PMLR, 2015, pp. 2408–2417.

[33] J. Martens and I. Sutskever, Training deep and recurrent networks with Hessian-free optimization, in Neural
networks: Tricks of the trade, Springer, 2012, pp. 479–535.

[34] L. Métivier, R. Brossier, J. Virieux, and S. Operto, Full waveform inversion and the truncated Newton
method, SIAM Journal on Scientific Computing, 35 (2013), pp. B401–B437.

[35] R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff, Hutch++: Optimal stochastic trace estimation,
in Symposium on Simplicity in Algorithms (SOSA), SIAM, 2021, pp. 142–155.

[36] Y. E. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k2), in
Dokl. akad. nauk Sssr, vol. 269, 1983, pp. 543–547.

[37] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media, 2006.
[38] R. Pascanu and Y. Bengio, Revisiting natural gradient for deep networks, arXiv preprint arXiv:1301.3584,

(2013).
[39] J. Peters and S. Schaal, Natural actor-critic, Neurocomputing, 71 (2008), pp. 1180–1190.
[40] R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical

applications, Geophysical Journal International, 167 (2006), pp. 495–503.
[41] N. Qian, On the momentum term in gradient descent learning algorithms, Neural networks, 12 (1999), pp. 145–

151.
[42] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal
of Computational physics, 378 (2019), pp. 686–707.

[43] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[44] N. N. Schraudolph, Fast curvature matrix-vector products for second-order gradient descent, Neural Compu-

tation, 14 (2002), pp. 1723–1738.
[45] Z. Shen, Z. Wang, A. Ribeiro, and H. Hassani, Sinkhorn natural gradient for generative models, Advances

in Neural Information Processing Systems, 33 (2020), pp. 1646–1656.
[46] C. Villani, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics, American Mathe-

matical Society, Providence, RI, 2003.
[47] J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74

(2009), pp. WCC1–WCC26.
[48] P. Xu, F. Roosta, and M. W. Mahoney, Second-order optimization for non-convex machine learning: An

empirical study, in Proceedings of the 2020 SIAM International Conference on Data Mining, SIAM, 2020,
pp. 199–207.

EFFICIENT NATURAL GRADIENT DESCENT METHODS 27

[49] H. H. Yang and S.-i. Amari, Complexity issues in natural gradient descent method for training multilayer
perceptrons, Neural Computation, 10 (1998), pp. 2137–2157.

[50] Y. Yang, A. Townsend, and D. Appelö, Anderson acceleration based on the H−s Sobolev norm for con-
tractive and noncontractive fixed-point operators, Journal of Computational and Applied Mathematics, 403
(2022), p. 113844.

[51] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney, Adahessian: An adaptive sec-
ond order optimizer for machine learning, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 10665–10673.

[52] L. Ying, Natural gradient for combined loss using wavelets, Journal of Scientific Computing, 86 (2021), pp. 1–10.
[53] A. Yu, Y. Yang, and A. Townsend, A quadrature perspective on frequency bias in neural network training

with nonuniform data, arXiv preprint arXiv:2205.14300, (2022).
[54] G. Zhang, J. Martens, and R. B. Grosse, Fast convergence of natural gradient descent for over-

parameterized neural networks, Advances in Neural Information Processing Systems, 32 (2019).
[55] B. Zhu, J. Hu, Y. Lou, and Y. Yang, Implicit regularization effects of the Sobolev norms in image processing,

arXiv preprint arXiv:2109.06255, (2021).

Appendix A. Symbols and Notations. See Table 3 for all the notations in Sections 1 to 3.

Appendix B. Algorithmic Details Regarding Numerical Implementation. This section presents
more details on the numerical implementation of the NGD methods. In particular, we explain
how to obtain the matrix L in (3.2) for the WNGD (2.27) in Appendix B.1. We have proposed
in Subsection 3.2 that the QR factorization could efficiently solve the least-squares problem (3.2).
In Appendix B.2, we discuss how to handle rank deficiency in Y = LZ through the QR factorization.

The main difficulties of computing NGD for large-scale problems include no direct access to
the Jacobian Z (see Subsection 3.3) and the computational cost of handling Z even if it is directly
available. Here, we present two interesting ideas that may mitigate these challenges, although we
have not thoroughly investigated them in the context of NGD methods. We discuss in Appendix B.3
one strategy based on randomized linear algebra if the Jacobian Z is unavailable. In Appendix B.4,
we briefly comment on an idea to further reduce the computational complexity of the NGD methods
by possibly obtaining a low-rank approximation of the Jacobian Z.

B.1. More Discussions on Computing the Wasserstein Natural Gradient. As explained
in Subsection 2.5, the Wasserstein tangent vectors at ρ are velocity fields of minimal kinetic energy
in L2

ρ(Rd;Rd). After a change of variable, ṽi =
√
ρ vi and ṽi satisfies (2.26). We will discuss next

how to solve this minimization problem numerically.
Discretization of the divergence operator. To compute the Wasserstein natural gradient,

the first step is to solve (2.26), which becomes (B.1) after discretization.

(B.1) min
y
‖y‖22 s.t. By = ζi, i = 1, . . . , p.

If the domain Ω is a compact subset of Rd (in terms of numerical discretization), the divergence
operator in (2.26) comes with a zero-flux boundary condition. That is, ṽ = 0 on ∂Ω. For simplicity,
we describe the case d = 2 where Ω is a rectangular cuboid. All numerical examples we present
earlier in this paper belong to this scenario.

First, we discretize the domain [a, b]× [c, d] with a uniform mesh with spacing ∆x and ∆y such
that x0 = a, xnx = b, y0 = c, and yny = d. The left-hand side of the linear constraint in (2.26)
becomes a matrix

B = −
[
AxD AyD

]
in (B.1) where D = diag(

√
~ρ), Ax = 1

2∆xCnx−1 ⊗ Iny−1 and Ay = 1
2∆y Inx−1 ⊗ Cny−1. Here, ~ρ is a

vector-format discretization of the function ρ while skipping the boundary points, ⊗ denotes the
Kronecker product, In ∈ Rn×n is the identify matrix and Cn ∈ Rn×n is the central difference matrix

28 L. NURBEKYAN, W. LEI, AND Y. YANG

with the zero-Dirichlet boundary condition.

(B.2) Cn =

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

n×n

.

One may also use a higher-order discretization for the divergence operator in (2.26). The
discretization of the vector field ṽ = (ṽx, ṽy)

> is y = (y>1 , y
>
2)> in (B.1) where y1 and y2 are

respectively the vector-format of ṽx and ṽy while skipping the boundary points due to the zero-flux
boundary condition. Note that B is full rank if ρ is strictly positive, and nx, ny are odd. We
remark that B and y remain very similar structures if Ω ⊂ Rd with d > 2.

Z available. If Z = (ζ1 ζ2 . . . ζp) is available, we can solve (2.26) directly. After discretization,
these equations reduce to constrained minimum-norm problems (B.1), where B is the discretization
of the differential operator −∇ · (√ρ •) evaluated at the current θ (and thus ρ(θ)). The solution
to (B.1) can be recovered via the pseudoinverse of B as

(B.3) Y = B†Z, where Y = (ṽ1 ṽ2 . . . ṽp) and Z = (ζ1 ζ2 . . . ζp).

In our case, B is underdetermined and we assume it to have full row ranks. We could perform the
QR decomposition of B> in the “economic” size:

(B.4) B† = Q(R>)−1, where B> = QR.

Since R> is lower diagonal, ṽi = Q(R>)−1ζi can be efficiently calculated via forward substitution.
If p is not too large, and we have access to {ζi} directly, this is an efficient way to obtain {ṽi}.

Once we obtain Y , we can compute the W2 NGD direction since (2.21) reduces to

(B.5) ηnatW2
= argmin

η∈Rp

∥∥∥∥√ρ ∂Wρ f +

p∑
i=1

ηiṽi

∥∥∥∥2

L2(Rd;Rd)

= −Y †
(√
ρ ∂Wρ f

)
,

where ∂Wρ f is related to ∂ρf based on (2.22), and Y † is the pseudoinverse of Y which one can
obtain by QR factorization; see details in Subsection 3.2.

We can also compute the W2 information matrix based on B† obtained via the QR factoriza-
tion (B.4). That is,

Gw2 = Y >Y = Z>(BB>)†Z = Z>(B†)>B†Z.

Therefore, if Y has full column ranks, the common approach is to invert the information matrix
Gw2 directly and obtain the NGD direction following (2.4) as

ηnatW2
= −G−1

w2
∂θf(ρ(θ)).

Discretization of the Wasserstein Gradient ∂Wρ f . Based on (2.27), we need to discretize

the weighted Wasserstein Gradient, b ≈ −√ρ∂Wρ f = −√ρ∇∂ρf , such that the WNGD ηnatW2
= Y †b

where Y = B†Z. We remark that the discretization of the gradient operator in
√
ρ∇∂ρf(ρ(θ)) needs

to be the numerical adjoint with respect to the matrix −B, the discretization of the divergence
operator. That is,

b ≈ −√ρ∇ (∂ρf(ρ(θ))) = (−B)>∂ρf.

EFFICIENT NATURAL GRADIENT DESCENT METHODS 29

This requirement is to ensure that

∂θjf(ρ(θ)) ≈ ∂ρf>ζj = ∂ρf
>Byj =

(
B>∂ρf

)>
yj = −b>yj ≈ 〈

√
ρ∇∂ρf,

√
ρvj〉L2(Rd;Rd),

which is the discrete version of

lim
t→0

f(ρ+ tζ)− f(ρ)

t
=

∫
Rd
∂ρf(ρ)(x) ζ(x)dx =

∫
Rd

√
ρ∇∂ρf(ρ)(x) · ṽ(x)dx, ∀ζ ∈ L2(Rd).

The equation above is the main identity used in the proof for Proposition 2.2.
For example, if we use the central difference scheme for the divergence operator −∇ · (√ρ •),

we also need to use central difference for the gradient operator ∇. Similarly, if one uses forward
difference for −B, the backward difference should be employed for the gradient operator ∇.

B.2. Dealing with rank deficiency. Note that in (3.2) , we need to solve a least-squares problem
given the matrix Y = LZ to find the NGD direction based upon a wide range of Riemannian metric
spaces. For simplicity, we will consider the problem in its general form: finding the least-squares
solution η to Y η = b where b = −(L>)†∂ρf based on (3.2).

The standard QR approach only applies if Y has full column rank, i.e., rank(Y) = p while
Y ∈ Rk×p. Otherwise, if rank(Y) = r < p, we are facing a rank-deficient problem, and an alternative
has to be applied. Even if Y is full rank, sometimes we may have a nearly rank-deficient problem
when the singular values of Y , {σi}, i = 1, . . . , p, decay too fast such that σr+1, . . . , σp � σr. A
conventional way to deal with such situations is via QR factorization with column pivoting.

In order to find and then eliminate unimportant directions of Y , essentially, we need a rank-
revealing matrix decomposition of Y . While SVD (singular value decomposition) might be the
most common choice, it is relatively expensive, which motivated various works on rank-revealing
QR factorization as they take fewer flops (floating-point operations) than SVD. The column pivoted
QR (CPQR) decomposition is one of the most popular rank-revealing matrix decompositions [16].
We remark that CPQR can be easily implemented in Matlab and Python through the standard qr

command, which is based upon LAPACK in both softwares [6].
Applying CPQR to Y yields

Y P = QR,

where P is the permutation matrix. Thus, the linear equation Y η = b becomes

Y PP>η = QRP>η = QRηp = b, where ηp = P>η.

Now, we denote by Q̃ and R̃ the truncated versions of Q and R respectively by keeping the first r
columns of Q and the first r rows of R. We may solve the linear system below instead

R̃ηp = Q̃>b.

The least-squares solution is no longer unique since we have truncated R due to the (nearly)
rank deficiency of Y . By convention, one may pick the one with the minimum norm among all
the least-squares solutions. Since ‖η‖2 = ‖ηp‖2 as P is a permutation matrix, this is equivalent to
finding a minimum-norm solution to the above linear system. This can be done by an additional
QR factorization. Let

R̃> = Q1R1

where Q1 ∈ Rp×r has orthonormal columns and R1 ∈ Rr×r is invertible. As a result,

ηp = Q1(R>1)−1Q̃>b.

30 L. NURBEKYAN, W. LEI, AND Y. YANG

Finally, we may obtain the solution

η = Pηp = PQ1(R>1)−1Q̃>b.

Again, (R>1)−1 should be understood as forward substitution.
We may apply the same idea if B in (B.1) is (nearly) rank deficient while we will keep its

dominant r ranks. Note that B is short wide. Applying CPQR to B> yields

B>P = QR,

where P is the permutation matrix, Q has orthonormal columns, and R is a p × p square matrix.
Thus, the constraint in (B.1) becomes

PP>By = PR>Q>y = ζi.

Again, we denote by Q̃ and R̃ the truncated version of Q and R by keeping the first r columns of
Q and the first r rows of R where r ≤ p. We may solve the linear system below instead

R̃>yq = P>ζi, where yq = Q̃>y.

Since R̃> is tall skinny, we may select the least-squares solution to the above system. We perform
a QR decomposition in economic size for R̃> such that R̃> = Q2R2. Therefore,

yq = R−1
2 Q>2 P

>ζi,

and eventually leads to

ṽi = y = Q̃yq = Q̃R−1
2 Q>2 P

>ζi.

Note that if R̃ = R and Q̃ = Q, i.e., r = p, the solution above coincides with the one obtained
from (B.3)-(B.4) since R−1

2 Q>2 = (R>)−1.
To sum up, for a tall-skinny matrix Y , we compute the following by two QR factorizations

while eliminating the unimportant directions during the process:

Y P = Q̃R>1 Q
>
1 ,

where R1 is a invertible square matrix while Q̃ and Q1 have orthonormal columns. Therefore,

Y † = PQ1(R>1)−1Q̃>.

Finally, η = Y †b = PQ1(R>1)−1Q̃>b. For a short-wide matrix B, we compute

B>P = Q̃R>2 Q
>
2 ,

where R2 is invertible while Q̃ and Q2 have orthonormal columns. Consequently,

B† = Q̃R−1
2 Q>2 P

>.

Finally, ṽi = B†ζi = Q̃R−1
2 Q>2 P

>ζi, for i = 1, . . . , p.

EFFICIENT NATURAL GRADIENT DESCENT METHODS 31

B.3. Z not available: the Hutchinson method. In this subsection, we present some ideas of
approximating Z using Hutchinson’s estimator [17, 35, 51], a powerful technique from randomized
linear algebra. Let ξ ∈ Rk be a vector with i.i.d. random coordinates of mean 0 and variance 1.
Such random vectors serve as a random basis. That is,

Z = E
[
ξξ>Z

]
.

Thus, if we have m such random vectors, ξ1, ξ2, . . . , ξm, then we can estimate

Hm(Z) =
1

m

m∑
k=1

ξkξ
>
k Z.

Furthermore, by introducing the adjoint variables λ1, λ2, . . . , λm such that

(B.6) λ>k ∂ρh = ξ>k , 1 ≤ k ≤ m,

and using (3.8), we obtain

Hm(Z) = − 1

m

m∑
k=1

ξkλ
>
k ∂θh.

Hence, by replacing Z in (3.2) with its approximation Hm(Z), we obtain an approximated NGD
direction as

(B.7) ηnatL = argmin
η∈Rp

∥∥(L>)†∂ρf + L Hm(Z) η
∥∥2

2
.

Once we obtain Hm(Z), the above least-squares problem can be solved by QR factorization, similar
to the framework presented in Subsection 3.2 or Appendix B.2. However, we remark here that the
convergence behavior of Hm(Z)

m→∞−−−−→ Z depends on the spectral properties of Z.

B.4. Exploring the column space of Z implicitly. As discussed in Appendix B.3, one way to
reduce the complexity of implementing the NGD method is to find a low-rank approximation to
the Jacobian Z = ∂θρ. For any ζ, we have that ζ = E [〈ζ, ξ〉ξ] given any random vector ξ whose
covariance is the identity. Hence, by the law of large numbers, for m large enough, we have that

(B.8) P
(∥∥∥ζ − ζ̂∥∥∥ > ε

)
< δ, where ζ̂ =

1

m

m∑
k=1

〈ζ, ξk〉ξk,

where {ξ1, ξ2, · · · , ξm} are i.i.d. random vectors. Therefore,∥∥∥L(ζj − ζ̂j)∥∥∥ < ‖L‖ε, 1 ≤ j ≤ p,

with high probability when m is large enough (depending on the spectral property of Z). Here, L
is the important linear operator in the unified framework (3.2). In Appendix B.3, we approximate

Y = LZ ≈ LHm(Z),

which is to compute the approximation matrix Hm(Z) directly. Next, we present another way to
obtain an approximated Y whether or not Z is explicitly available.

32 L. NURBEKYAN, W. LEI, AND Y. YANG

If we can find such {ξk} satisfying (B.8), our final approximation to each yj in Y = LZ =
(y1 . . . yj . . . , yp) could be written as

(B.9) yj = Lζj ≈ Lζ̂j =
1

m

m∑
k=1

〈ζj , ξk〉Lξk, 1 ≤ j ≤ p.

Note that the inner product 〈ζj , ξk〉 can be computed via the adjoint-state method if there is no
direct access to {ζj}; see Section 3.3.1 for details. Therefore, to obtain an approximated Y , we only
need to evaluate Lhk and the inner products 〈ζj , ξk〉 for each k and j, without directly accessing
the Jacobian Z = (ζ1 . . . ζp). A similar idea called randomized SVD could also apply here [15].

EFFICIENT NATURAL GRADIENT DESCENT METHODS 33

Table 3: Table of notations in Sections 1 to 3.

Section 1

θ the unknown parameter
ρ the state variable that depends on θ
f(ρ) the loss function that depends on ρ
(M, dρ), (Θ, dθ) the metric space of ρ and θ, respectively

Section 2

(M, g) the space M endowed with a Riemannian metric g
TρM the tangent space of M
p the dimension of the parameter, θ ∈ Θ ⊆ Rp
∂gθiρ(θ) ∈ TρM the tangent vector of ρ(θ) with respect to θi based on

the Riemannian geometry (M, g), 1 ≤ i ≤ p
∂gρf(ρ) ∈ TρM the metric gradient of f(ρ) with respect to ρ based on

the Riemannian geometry (M, g)
ηnat, ηstd the natural and standard gradient directions for θ
∂θf(ρ(θ)) the gradient of f(ρ(θ)) with respect to θ
P∂gρf the 〈·, ·〉g(ρ)-orthogonal projection of −∂gρf onto

span{∂gθ1ρ, . . . , ∂
g
θp
ρ}

G(θ) the information matrix Gij(θ) = 〈∂gθiρ, ∂
g
θj
ρ〉g(ρ(θ)), i, j = 1, . . . , p

ζ, ζ̂ tangent vectors on TρM
ζi = ∂θiρ, i = 1, . . . , p tangent vectors on the Euclidean space (L2(Rd), 〈·, ·〉L2(Rd))

∂ρf the metric gradient of f(ρ) in (L2(Rd), 〈·, ·〉L2(Rd))

GL
2
, GH

s
, GḢ

s
, GFR, GW the information matrices for different Riemannian metrics

Ds a differential operator that outputs a vector of all the
partial derivatives up to order s where s ≥ 0

A∗, A† the adjoint and the pseudoinverse of the linear operator A

χ, χ̂ the tangent vectors in H−s mapped from ζ, ζ̂ in Hs, s < 0
4 the Laplacian operator

D̃s a differential operator that outputs a vector of all the
partial derivatives of positive order up to s where s > 0

P2(Rd) the set of Borel probability measures of finite second moments
f]ρ the pushforward distribution of ρ by f
Γ(ρ1, ρ2) the set of all measure π ∈ P(R2d) with ρ1 and ρ2 as marginals
v, v̂, w, {vi}pi=1 the tangent vectors in TρP2(Rd) ⊂ L2

ρ(Rd;Rd)
{ṽi}pi=1 the re-normalized Wasserstein tangent vectors, ṽi =

√
ρ vi

B the differential operator defined by Bṽ = −∇ · (
√
ρ(θ) ṽ)

Bk a generalized version of B given by Bkṽ = −∇ · (ρ(θ)kṽ)
L with different choice of L, all natural gradient directions can be

formulated as ηnat = argminη∈Rp ‖(L∗)†∂ρf +
∑p

i=1 ηi Lζi‖2L2(Rd)

Section 3

ρ ∈ Rk the discretized state variable
∂ρf , Z = ∂θρ the finite-dimensional gradient and Jacobian in Euclidean space
L the discretization of the operator L for different metric spaces
GL = Y >Y the discretized information matrix, Y = LZ
ηnatL the natural gradient direction in a unified framework (3.2)
h(ρ, θ) = 0 the implicit dependence of ρ on θ
λξ, λ the adjoint variable, solutions to the adjoint equation

	1 Introduction
	2 Mathematical formulations of NGD
	2.1 L2 natural gradient
	2.2 Hs natural gradient
	2.3 s natural gradient
	2.4 Fisher–Rao–Hellinger natural gradient
	2.5 W2 natural gradient
	2.6 Gauss–Newton algorithm as an L2 natural gradient

	3 General computational approach
	3.1 A unified framework
	3.2 Z available
	3.3 Z unavailable
	3.3.1 The implicit function theorem and adjoint-state method
	3.3.2 Krylov subspace methods

	3.4 Computation for natural gradient examples in sec:mathnat
	3.5 Extensions and variants
	3.5.1 A damped information matrix
	3.5.2 Mini-batch NGD

	4 Numerical results
	4.1 Gaussian mixture model
	4.2 Physics informed neural networks
	4.3 Full waveform inversion

	5 Conclusions
	Appendix A. Symbols and Notations
	Appendix B. Algorithmic Details Regarding Numerical Implementation
	B.1 More Discussions on Computing the Wasserstein Natural Gradient
	B.2 Dealing with rank deficiency
	B.3 Z not available: the Hutchinson method
	B.4 Exploring the column space of Z implicitly

