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ABSTRACT. In order to compare and interpolate signals, we investigate a Riemannian geometry on the
space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing
many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals,
which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We
characterize the metric properties of the space of signals and establish the regularity and stability of geodesics.
Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several
experiments which highlight the nature of the metric.

1. INTRODUCTION

In [30], Miller and Younes introduced a deformation-based geometry on the space of L2 functions in
arbitrary dimension. It allows for and measures both horizontal deformations (as does the Wasserstein
metric) and vertical deformations (as does the L2 norm). Unlike the Wasserstein distance, it allows for
signals that change signs. We will refer to the resulting geometry as the HV geometry throughout the
paper.

Trouvé and Younes [36] provided some of the foundational results, and subsequent works generalizing
the approach to a variety of distances and settings. However, there have been few works carefully studying
the associated geometry of the signals and theoretically establishing its properties. This is in stark contrast
with the abundance of developments of variants of optimal transportation. In the hope of fostering further
development of this and related geometries, we provide a largely self-contained introduction in perhaps the
simplest setting, namely one-dimensional signals. We then prove new results characterizing the resulting
metric, providing various a priori estimates, and establishing the regularity and stability of minimizing
geodesics. Furthermore, we introduce a simple and efficient scheme to compute the metric.

While this framework of [36] has been used in applications, primarily in image processing, we are
unaware that it has been applied to the setting of one-dimensional signals. Here we argue that when
considered in the space of signals (one-dimensional functions), it provides a viable metric that has
desirable features and can be effectively computed. This opens the door for a variety of applications.

Given a finite interval, which, for simplicity, we set to be r0, 1s, we consider the space of signals to
be the L2 functions. The paths on the space of signals are described by (weak) solutions of the transport
equation with a source. In particular, a path connecting f0, f1 P L

2p0, 1q is described by

Btf “ ´Bxf ¨ v ` z on r0, 1s ˆ r0, 1s,

vp0, ¨ q “ vp1, ¨ q “ 0,

fp ¨ , 0q “ f0, fp ¨ , 1q “ f1.

(1)
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FIGURE 1. An example of the computed geodesic in the space of signals according to
the HV geometry for κ “ 0.1, λ “ 0.01, and ε “ 0.0005. We note that for some features,
horizontal transform dominates, while some parts are matched by vertically moving the
signals.

The action measuring the effort of deforming f0 to f1 along the particular path is

(2) Aκ,λ,εpf, v, zq “
1

2

ż 1

0

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dxdt

where κ ą 0, λ ě 0, and ε ą 0.
The v2 term measures the horizontal movement of the signal, while the z2 measures the vertical change.

The parameter κ is for modeling flexibility, as it accounts for horizontal and vertical variations differently.
We note that the horizontal transport is modeled by the transport equation term, Bxf ¨ v, instead of the
continuity equation divpfvq. Thus, even if z ” 0, the integral of f is not preserved unless div v ” 0. The
λv2

x term measures how far from being conservative the transport is. It is helpful to mention that in a
higher dimensional analog of the metric vx term would be replaced by div v. In essence, it describes how
much space needs to be created/removed to expand/contract the region where f takes a certain value. The
εv2
xx term is necessary for regularity. In particular, it ensures that very small regions cannot be inflated

at an arbitrarily small cost, which would create an undesirable shortcut that could become the dominant
transport mechanism. Indeed we discuss in Section 2.1 that the geometry can degenerate if ε “ 0.

We define the distance between functions f0 and f1 as the infimum of the action among all admissible
paths connecting them

dHV pκ,λ,εq :“ inf
pf,v,zq

ż 1

0

d

1

2

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dx dt “ inf
pf,v,zq

b

Aκ,λ,εpf, v, zq.

The second equality is proved using reparameterization. When parameters κ, λ, and ε are clear in the
context, we use the short-hand notation dHV . See Figure 1 for an example of the computed geodesic
between two signed signals based on the HV geometry.

The metric we describe above is not new; modulo some minor technical details, it is the metric
introduced by Miller and Younes [30] and studied by Trouvé and Younes [37] and belongs to the family of
metamorphoses studied by Trouvé, Younes, and Holm [22]. It is also closely related to the metrics studied
by Charlier, Charon, and Trouvé [10, 11]. In particular, [37] and [10, Theorem 2] show the existence of
geodesics, and [11, Property 1] shows the completeness of the metric. The works [22, 10, 11] display
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very general frameworks and large families of possible deformation-based ways to compare functions on
both fixed and changing sets and manifolds.

Here we present a simple and self-contained description of the particular metric of interest in the space
of signals. Our problem description is primarily Eulerian instead of the approach based on groups of
diffeomorphisms. The Eulerian point of view, allows us to consider paths between signals with less
regularity. This allows us to prove that metrics that only penalize one derivative do not lead to a geodesic
space, as minimizing geodesics may not exist; see Section 2.1. We prove the existence of geodesics and
the completeness of the resulting metric space of signals, which are analogous to those in [36] and [11],
respectively. Our approach allows us to characterize the convergence in the resulting space of signals as
the L2 convergence; see Theorem 2.16. We are not aware of such a result in the other frameworks. In
particular, knowing that the resulting metric is not weaker than the L2 distance provides clarity about the
distance that deformations induce. Furthermore, we prove a priori estimates on the minimizers, allowing
us to exhibit that the minimizers preserve the regularity of the signals. In particular, Proposition 3.1 shows
the result for signals in H1 and Remark 3.2 shows it for smooth signals.

Furthermore, we introduce a numerical algorithm, which iterates between optimizing the action over
v and z with f fixed and optimizing over z and f with v fixed. Each of the subproblems amounts to
minimizing a quadratic functional under a linear constraint (unlike the full problem where the constraint
is nonlinear) and thus can be efficiently performed. We observe that the algorithm quickly (within a
few iterations) converges to a local minimum of the action. By iterating between solving these two
sub-problems, we can show that the action functional (2) monotonically decreases on the continuous level.
We employ a Lagrangian approach when optimizing over z and f with v fixed, which involves numerical
integration and numerical interpolation. When optimizing the action over v and z with f fixed, we solve a
fourth-order partial differential equation (PDE) through the finite-difference method. Since the geodesic
obtained depends on the initial data, we also propose a velocity initialization for which matches the k
most prominent peaks of each signal. To mitigate the issue of only finding a local minimizer, we optimize
over k P t0, 1, . . . , kmaxu to select the initialization that leads to the smallest action value, where kmax is
the number we pick, denoting the maximum number of prominent peaks we aim to match. In particular,
k “ 0 corresponds to zero-velocity initialization.

1.1. Literature review. Designing and choosing the right way to compare the functions considered are
important in a number of contexts. In inverse problems, such as denoising, deblurring, or wave-form
inversion, choosing an appropriate way to measure loss is crucial to the outcome. If the signals represent
the distribution of mass where the location of the mass is more important than the density, optimal
transportation metrics perform especially well [15, 17]. In the setting of optimal transportation with
quadratic cost, the equation in (1) is replaced by the continuity equation:

Btf “ ´divpfvq

and the action is

AW pf, vq “

ż 1

0

ż 1

0
v2f dxdt.

The optimal transportation metrics have the requirement that the functions compared are nonnegative
with the same total mass. The mass requirement was relaxed by the unbalanced optimal transport
[24, 13], which allows for the change of the mass, but still requires non-negativity. For unbalanced
transport, the continuity equation can have a multiplicative source term, and the action also penalizes
signal amplification:

Btf “ ´divpfvq ` zf,

and AUBpf, vq “

ż 1

0

ż 1

0
pv2 ` z2qf dxdt.
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There is a need to compare general signals with both positive and negative values in many applications,
such as full-waveform inversion [17]. It poses a limitation for applications of optimal transportation.
Several ideas for adapting optimal transportation approaches to signed signals have been introduced [17].
They include adding a constant, exponentiating the signal, comparing positive and negative parts separately,
and considering the transportation between the graphs of functions on the product space (e.g., TLp metric
[34]). Comparing the signals on graphs has been shown as effective in full-waveform inversion and related
problems [27]. However, all of these approaches lack one of the key elements, namely the Riemannian
nature that allows for interpolation or the desired invariance dpf0, f1q “ dp´f0,´f1q.

Geometric ways for comparing shapes and submanifolds of Rd have received a lot of attention in
computer vision, computational anatomy and geometry processing. Riemannian geometries on the space
of curves have been much studied. Mumford and Michor [28] showed that if only the L2 norm of the
velocity is considered in the action, then the metric degenerates. Bruveris, Michor and Mumford [9, 8]
and Nardi, Peyre, and Vialard [31] established that the space of immersed plane curves is geodesically
complete when the Sobolev or, respectively, BV -based metric involves the L2 norm of two or more
derivatives. Early works on computational anatomy and nonrigid registration have led to studies of
geometries of the shapes of surfaces, as well as higher dimensional manifolds, many of which are surveyed
in the book by Younes [41]. Recent results [3, 4] established the local well-posedness of geodesic
equations when the metrics penalize at least one derivative of the deformation field.

A different line of work investigates the spaces of shapes considered as interiors of sets. In some sense,
this takes into account the mass contained in the set, as does the Wasserstein distance. Liu, Pego and
one of the authors, [25], showed that restricting the Wasserstein geometry to the space of characteristic
functions is not viable, as the geodesics do not exist. In fact, minimizing curves converge weakly to the
Wasserstein geodesics in the unconstrained space. Wirth, Bar, Rumpf, and Sapiro [40] considered actions
that penalize the gradient of the velocity field and showed that, in this case, the geometry is viable. The
framework was refined by Rumpf and Wirth [32, 33], who also provided a numerical method for finding
geodesics.

In parallel with the studies of the geometry of the spaces of curves and shapes, researchers considered
the metrics which allow for comparing signals, such as gray-level images, while allowing for both
deformations of the domain and intensity variations. Trouvé [35] introduced the basic description based
on group actions. This was refined into the description of deformable templates [36] and metamorphoses
[37] by Trouvé and Younes. As we indicated at the beginning, the geometry we study belongs to this
family. Eulerian description of metamorphosis was carried out in [22]. Charlier, Charon, and Trouvé
[10, 11] considered spaces where one compares manifolds together with functions on them. The authors
of [10, 11] showed that under sufficient regularity assumptions, in the space of manifold, function pairs
are geodesically complete. Many of the numerical approaches (e.g. [29, 20]) to computing the minimizing
geodesics between the given images relied on the so called shooting methods where one iterates computing
the forward geodesic for the given initial conditions and adjusts the initial conditions. Berkels, Effland,
and Rumpf [6] took a different approach and gave a variational formulation based on discrete-in-time
paths where one minimizes the deformation between consecutive images in a way that is consistent with
the action integrated in time. This is a promising and well founded approach. One difference to our
approach is that their sub-problems remain nonconvex.

1.2. Outline. The rest of the paper is organized as follows. In Section 2, we define the HV geometry and
the associated distance and establish their properties. In particular, we present the scaling invariances of
the metric in Proposition 2.1. In Section 2.2, we rigorously identify the tangent space. The identification
is analogous but slightly different from the one [36] in that instead of equivalence classes, we identify the
representatives that achieve the minimal length (just as the gradient vector fields minimize the action for
Wasserstein geometry). In Section 2.3, we provide a number of a priori estimates, prove the existence of
geodesics (in a slightly different way from that in [36]), and obtain representation formulas satisfied by
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geodesics. In Section 2.4, we prove the completeness of the dHV metric on L2p0, 1q and that the topology
induced by dHV on L2p0, 1q is the same as the one induced by the L2 norm. Moreover, we show in
Proposition 2.3 that without involving the second-order derivative of the velocity, action minimizers may
not exist. In Section 3, we further study several properties of the geodesics. In Proposition 3.1, we show
that if the starting and the ending signals are in H1, then the signals along the minimizing geodesic remain
in H1. Furthermore, Remark 3.2 indicates that if the signals are smooth, so is the geodesic connecting
them. Proposition 3.3 establishes the L2 stability of minimizing geodesics with respect to perturbations
of the endpoints. We note that this is not a straightforward compactness result since, initially, one only
has control over the L2 norms of the signals. Section 3.1 is devoted to establishing first-order optimality
conditions of the action minimizers. We first obtain these conditions for general L2 signals. If the signals
are further in H1, we show that the Euler–Lagrange equations have the form of differential equations. In
Section 4, we introduce our numerical method. We first present the iterative minimization scheme that
uses two sub-problems which are based on Euler–Lagrange equations and representation formulas for the
geodesics. The discretization we use based on finite difference is included in Section 4.2. We describe our
approach to the path initialization in Section 4.3. As the energy often has local minimizers, it is important
to use initialization informed by the signals. In Section 5, we display several illustrative examples that
highlight the properties of the HV signal geometry, as well as the numerical approach we take. We also
apply our scheme to signals from the ECG datasets and seismology. Finally we discuss the parameter
selection in Section 5.1.

2. HV GEOMETRY AND ITS PROPERTIES.

To rigorously define the HV distance we start by precisely defining the set of admissible paths. Let
V :“ L2pp0, 1q, H2p0, 1qXH1

0 p0, 1qq. Given f0, f1 P L
2p0, 1q we define the set of admissible paths to be

Apf0, f1q :“
 

pf, v, zq | f P L2pp0, 1q, L2p0, 1qq X Cpr0, 1s, H´1p0, 1qq,

v P V, z P L2pp0, 1q, L2p0, 1qq,

Btf ` Bxf ¨ v “ z weakly, fp¨, 0q “ f0, fp¨, 1q “ f1

(

.

(3)

By weak solutions of Btf ` Bxf ¨ v “ z above we mean that for any test function φ P C8pr0, 1s2q,

´

ż 1

0

ż 1

0
fBtφdx dt`

ż 1

0
f1pxqφpx, 1q dx´

ż 1

0
f0pxqφpx, 0q dx

“

ż 1

0

ż 1

0
fφBxv dx dt`

ż 1

0

ż 1

0
fBxφv dx dt`

ż 1

0

ż 1

0
φz dx dt.

(4)

The HV distance is then defined by

(5) dHV pκ,λ,εq :“ inf
pf,v,zqPApf0,f1q

ż 1

0

d

1

2

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dx dt

The definition of the distance implies the following simple, but useful properties.

Proposition 2.1. Consider f0, f1 P L
2p0, 1q. Let c ą 0. Then

(i) dHV pf0, f1q ď }f0 ´ f1}L2 .
(ii) dHV p´f0,´f1q “ dHV pf0, f1q

(iii) dHV pf0 ` c, f1 ` cq “ dHV pf0, f1q

(iv) dHV pc2κ,c2λ,c2εqpcf0, cf1q “ cdHV pκ,λ,εqpf0, f1q

To indicate the behavior of the action with respect to rescaling the space extend f0 and f1 periodically to
R. Likewise, given a path pf, v, zq consider it extended periodically to R. Then for L P N
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(v) AL2κ,λ,ε{L2pfpL ¨ , ¨ q, vpL ¨ , ¨ q, zpL ¨ , ¨ qq “ Aκ,λ,εpf, v, zq, where the action is considered
only on r0, 1s, as usual.

Property (i) is proved by computing the action of the linear interpolation while the remaining properties
are proved by a straightforward application of the definition of the action.

2.1. Degeneracy without the second derivatives. Before proving rigorous results about dV , we show
that is we ε “ 0 the geometry of signals would not have all of the desirable properties. In particular the
show that there exist functions f0 and f1 such that there does not exist any minimizers for the action.

To be more precise, consider the set of admissible paths to be as in (3), but with V replaced by
L2pp0, 1q, H1

0 p0, 1qq. Consider the action

(6) Apf, v, zq “

ż 1

0

ż 1

0
v2 ` v2

x ` z
2dxdt.

We start by noting that linear interpolation is not optimal when f0 and f1 are constant functions that
differ sufficiently.

Lemma 2.2. If ε “ 0, then for all λ P r0,8q there exists H P R such that the linear interpolation path
between f0 ” 0 and f1 ” H is not optimal.

Proof. Consider f0 ” 0 and f1 ” H for some H ą 0. One possible path between f0 and f1 is by L2

interpolation. This path is defined by v ” 0 and z ” H . Then

Apf, v, zq “

ż 1

0

ż 1

0
z2dxdt “ H2

We construct a competitor with nonzero velocity v. In the time interval t P r0, 1{3s, use an L2

interpolation between f0 and

f2pxq “

#

H x ď s

0 x ą s

for fixed s P p0, 1{2q. In this time interval, v ” 0, and
ş

1
3
0

şs
0 z

2dxdt “ 3sH2. On the time interval
t P r1{3, 2{3s, the signal moves from f2 to

f3pxq “

#

H x ď 1´ s

0 x ą 1´ s

by moving the edge of the step function with a constant speed 3p1´ 2sq. The velocity parameterized by
the initial position is wpxq “ 3p1´ 2sqxs for x P p0, ss and wpxq “ 3p1´ 2sq1´x

1´s for x P ps, 1q. Then
for all t P r1{3, 2{3s, the velocity is v

`

x` wpxq
`

t´ 1
3

˘

, t
˘

“ wpxq. By chain rule 0 ď v ď 3p1´ 2sq

and |vx| ď
3p1´2sq

s . So
ż 2

3

1
3

ż 1

0
v2 ` λv2

xdxdt ď 3p1´ 2sq2
ˆ

1`
λ

s2

˙

The interpolation between f2 and f3 is that the signal is constant along the trajectories. Finally use
L2 interpolation between f3 and f1. This is symmetric to the time interval r0, 1{3s and adds 3sH2 to the
action.

Thus the total action for this path is bounded above by 6sH2` 3p1´ 2sq2
`

1` λ
s2

˘

. By picking s ă 1
6 ,

and thenH ą 0 such thatH2 ą 3
1´6sp1´2sq2

`

1` λ
s2

˘

, we have thatH2 ą 6sH2`3p1´2sq2
`

1` λ
s2

˘

.
Therefore L2 interpolation is not the optimal path between f0 ” 0 and f1 ” H . �

Proposition 2.3. There exists H ą 0 such that there is no path between f0 ” 0 and f1 ” H minimizing
the action (6) .
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Proof. Assume H satisfies the condition of Lemma 2.2. Consider any path pf, v, zq from f0 to f1. We
split the argument into two cases depending on whether v ” 0.

Case 1o If v ” 0. Then ft “ z for all x, t, that is the path is linear interpolation. Hence, be Lemma 2.2
the path does not minimize the action.

Case 2o v ı 0. From the path pf, v, zq we can construct a new path pf̃ , ṽ, z̃q by creating two copies of
f shrank to interval 1

2 .

f̃px, tq “

#

fp2x, tq x ď 1
2

fp2x´ 1, tq x ě 1
2

ṽpx, tq “

#

1
2vp2x, tq x ď 1

2
1
2vp2x´ 1, tq x ě 1

2

z̃px, tq “

#

zp2x, tq x ď 1
2

zp2x´ 1, tq x ě 1
2 .

A consequence of this is that

ṽxpx, tq “

#

vxp2x, tq x ď 1
2

vxp2x´ 1, tq x ě 1
2 .

For the action of this path,

Apf̃ , ṽ, z̃q “

ż 1

0

ż 1
2

0
ṽ2 ` ṽ2

x ` z̃
2dxdt`

ż 1

0

ż 1

1
2

ṽ2 ` ṽ2
x ` z̃

2dxdt

“

ż 1

0

ż 1
2

0

1

4
vp2x, tq2 ` ṽxp2x, tq

2 ` z̃p2x, tq2dxdt

`

ż 1

0

ż 1

1
2

1

4
ṽp2x´ 1, tq2 ` ṽxp2x´ 1, tq2 ` z̃p2x´ 1, tq2dxdt

“

ż ż

1

4
v2 ` v2

x ` z
2dx.

Since v is non-zero, this is strictly less than the action Apf, v, zq. Thus the path pf, v, zq is not minimal.
Therefore so no path between f0 and f1 minimizes the action. �

2.2. Identification of the tangent space. We note that dHV , defined in (5), can be seen as the length of
a curve in the space of signals. Indeed, as we show below, pL2p0, 1q, dHV q is geodesic space. From the
definition of the admissible curves and the action we see that in Eulerian description of the tangent space

(7) Tanf,Euler “ t´vfx ` z : v P H2p0, 1q XH1
0 p0, 1q, z P L2p0, 1qu Ď H´1

where vfx is the element of H´1 defined by x´vfx, φy “
ş1
0 vxfφ ` vfφxdx for all φ P H1

0 . We
show below that in the Lagrangian description the tangent space can be identified with a subspace of
pH2p0, 1q XH1

0 p0, 1qq ˆ L
2p0, 1q.

Lemma 2.4. Given f P L2p0, 1q, v̄ P H2p0, 1q XH1
0 p0, 1q and z̄ P L2p0, 1q there exists a unique pair

v P H2p0, 1q XH1
0 p0, 1q, z P L

2p0, 1q minimizing the instantaneous action

(8) Qf pv, zq “
1

2

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dx
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under the constraint

(9) @φ P H1
0 p0, 1q

ż 1

0
fvxφ` fvφx ` zφ dx “

ż 1

0
fv̄xφ` fv̄φx ` z̄φ dx.

We will denote the solution mapping by S : H2p0, 1q XH1
0 p0, 1q ˆ L

2p0, 1q Ñ H2p0, 1q XH1
0 p0, 1q ˆ

L2p0, 1q, that is pv, zq “ Spv̄, z̄q.

Proof. Let Cpf, v̄, z̄q be the set of v P H2p0, 1q XH1
0 p0, 1q, z P L

2p0, 1q satisfying the constraint (9).
Note that if pvn, znq P Cpf, v̄, z̄q, vn Ñ v in H1

0 , zn á z in L2 as n Ñ 8 and v P H2p0, 1q then
pv, zq P Cpf, v̄, z̄q. Namely fφ P L2 ensures that

ş

fpvnqxφdxÑ
ş

fvxφdx and vn Ñ v in L8 implies
ş

fvnφxdxÑ
ş

fvφxdx as nÑ8.
We note that pv̄, z̄q P Cpf, v̄, z̄q and Qf pv̄, z̄q ă 8. Let pvn, znq P Cpf, v̄, z̄q be a minimizing

sequence of Q. Thus tvnun is bounded in H2 and tznun is bounded in L2. Hence there is a subsequence,
which by relabeling we can assume to be the whole sequence, vn Ñ v in H1

0 and zn á z in L2 to some
v P H2 XH1

0 and z P L2. By above pv, zq P Cpf, v̄, z̄q. Since Qf is sequentially lower-somicontinuous
with respect to H1 convergence in v and weak L2 convergence in z we conclude that pv, zq minimizes
Qf over Cpf, v̄, z̄q.

The uniqueness follows from the fact that Qf is strictly convex and that Cpf, v̄, z̄q is convex. �

We now characterize the solution pv, zq “ Spv̄, z̄q above via the first variation. We note that condition
(9) implies that pv´ v̄qfx belongs to L2, in the sense that xpv´ v̄qfx, φy “

ş1
0pz´ z̄qφ for all φ P H1

0 p0, 1q,
where x ¨ , ¨ y denotes the dual pairing between H´1 and H1

0 . It is straightforward to show that for
f P L2p0, 1q and u P H2p0, 1q XH1

0 p0, 1q the condition ufx P L2p0, 1q is equivalent to uf P H1p0, 1q.
This motivates us to introduce the space

(10) Rpfq “
 

u P H2p0, 1q XH1
0 p0, 1q : uf P H1p0, 1q

(

.

Note that for u P Rpfq ufx “ pufqx ´ uxf P L
2. We also remark that if f P H1 then Rpfq “

H2p0, 1q XH1
0 p0, 1q.

Lemma 2.5. Consider f P L2p0, 1q, v̄ P H2p0, 1q XH1
0 p0, 1q and z̄ P L2p0, 1q. Then pv, zq “ Spv̄, z̄q

if and only if v P H2p0, 1q XH1
0 p0, 1q, z P L

2p0, 1q and

(11) @u P Rpfq

ż 1

0
κvu` λvxux ` εvxxuxx ` ppv ´ v̄qfx ` z̄qpufxqdx “ 0.

Proof. If pv, zq “ Spv̄, z̄q then v P H2p0, 1q XH1
0 p0, 1q, z P L

2p0, 1q. Taking u P Rpfq and h “ ufx,
which belongs to L2, since u P Rpfq we note that pv ` su, z ` shq P Cpf, v̄, z̄q. First variation in of Qf
at pv, zq gives the condition (11).

Now assume that v P H2p0, 1q XH1
0 p0, 1q, z P L

2p0, 1q and that (11) holds. Let pṽ, z̃q “ Spv̄, z̄q. By
above (11) holds for pṽ, z̃q in place of pv, zq. Furthermore note that v ´ ṽ “ pv ´ v̄q ´ pṽ ´ v̄q P Rpfq.
Taking u “ v ´ ṽ and subtracting the two forms of (11) gives

ż 1

0
κpv ´ ṽq2 ` λpvx ´ ṽxq

2 ` εpvxx ´ ṽxxq
2 ` ppv ´ ṽqfxq

2dx “ 0

Thus v “ ṽ and z “ z̃. �

It is useful to note that if f P H1p0, 1q and hence Rpfq “ H2p0, 1q X H1
0 p0, 1q, the condition (11)

means that for g “ ´fxv̄ ` z̄, v is a weak solution of

εvxxxx ´ λvxx ` κv ` f
2
xv “ ´fxg on p0, 1q

v “ 0 at t0, 1u

vxx “ 0 at t0, 1u.

(12)
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The above lemmas allow us to characterize the tangential velocities, namely we define

(13) Tanf “
 

pv, zq P H2p0, 1q XH1
0 p0, 1q ˆ L

2p0, 1q : pv, zq “ Spv, zq
(

.

Lemma 2.5 gives that a pair pv, zq P H2p0, 1q XH1
0 p0, 1q ˆ L

2p0, 1q belongs to Tanf if and only if

(14) @u P Rpfq

ż 1

0
κvu` λvxux ` εvxxuxx ` zufxdx “ 0.

In the special case that f P H1p0, 1q we can characterize Tanf as the set of pairs pv, zq where
z P L2p0, 1q and v P H2p0, 1q XH1

0 p0, 1q is a weak solution of

εvxxxx ´ λvxx ` κv “ ´fxz on p0, 1q

v “ 0 at t0, 1u

vxx “ 0 at t0, 1u.
(15)

We furthermore remark that if u P Rpfq then, since H1 functions in one dimension are continuous we
have that both uf and u are continuous. Thus f “ uf{u must be continuous on the set where u ‰ 0. In
other words if f does not have a representative that is continuous at some x then all functions u P Rpfq
are equal to zero at x; upxq “ 0. In particular if f in nowhere continuous then the only u in Rpfq is the
zero function. Consequently if f is nowhere continuous then Tanf “ H2p0, 1q XH1

0 p0, 1q ˆ L
2p0, 1q,

that every pair is a tangent pair.

2.3. Existence of minimizing paths. Here we show the existence of minimizers of the action (2)

Theorem 2.6. Consider f0, f1 P L
2p0, 1q. There exists an admissible path pf, v, zq P Apf0, f1q minimiz-

ing the action (2).

Before proving Theorem 2.6, we first establish several properties of solutions of the transport equation.
These results and the techniques are standard, we present them for completeness.

Lemma 2.7. Given v P V , z P L2pp0, 1q2q. Let f0 P L
2p0, 1q. If f P L2pp0, 1q2q is a weak solution to

the initial value problem

fp¨, 0q “ f0, Btf ` Bxf ¨ v “ z on r0, 1s2,

in the sense that for every φ P C8pr0, 1s2q, (4) holds, then f has the following representation: for a.e.
x, t in r0, 1s2,

(16) fpΦpx, tq, tq “ f0pxq `

ż t

0
zpΦpx, sq, sq ds,

where Φ is the flow of the vector field v:

(17) BtΦpx, tq “ vpΦpt, xq, tq, Φp0, xq “ x.

It follows that the weak solution f is unique.

Proof. Let us extend f0, z, v, f by zero outside of r0, 1s, and denote the extensions by z̃, f̃0, ṽ, f̃ . Note that
ṽ P L2p0, 1,W 1,8pRqq since H2p0, 1q embeds in W 1,8p0, 1q, vp0, ¨ q ” 0, vp1, ¨ q ” 0, and extending
by zero preserves the Lipschitz constant.

Then f̃ P L2p0, 1, L2pRqq satisfies that for all test functions φ P C8pRˆ r0, 1sq with compact support
in Rˆ r0, 1q

´

ż 1

0

ż

R
f̃Btφ dxdt´

ż

R
f̃0φpx, 0q dx “

ż 1

0

ż

R
f̃pṽBxφ` φBxṽq dxdt`

ż 1

0

ż 1

0
φz̃dxdt.



10 RUIYU HAN, DEJAN SLEPČEV, AND YUNAN YANG

Since ṽ is Lipschitz in space, the representation of solutions of the transport equation (see Proposition 2.3
in [1]), for a.e. x

f̃pΦ̃px, tq, tq “ f̃0pxq `

ż t

0
z̃pΦ̃px, sq, sqds, t P r0, 1s,

where Φ̃ is the flow of the vector field ṽ, which satisfies the differential equation

BtΦ̃px, tq “ ṽpΦ̃px, tq, tq, Φ̃p0, xq “ x

for each t. Notice that since ṽpx, tq “ 0 for all x P Rzp0, 1q and all t P r0, 1s, by the uniqueness of flow
map we have that for a.e. x P p0, 1q, Φ̃px, tq P p0, 1q for all t. Define Φpx, tq :“ Φ̃px, tq1txPr0,1su. Then
Φ is the flow of v and for a.e. x in r0, 1s,

fpΦpx, tq, tq “ f0pxq `

ż t

0
zpΦpx, sq, sqds, @t P r0, 1s.

�

Remark 2.8. [Representation formulas for action minimizing paths.] Note that if z P L2pp0, 1q2q is a
weak solution of Btz ` Bxpzvq “ 0 and v satisfies the conditions of the previous lemma, then it is a weak
solution of Btz ` pBxzqv “ ´zBxv. Thus

zpΦpx, tq, tq “ zpx, 0q ´

ż t

0
zpΦpx, sq, sqvxpΦpx, sq, sqds

which is an integral form of the ODE whose solution is

(18) zpΦpx, tq, tq “ zpx, 0q e´
şt
0 vxpΦpx,sq,sqds,

where Φ is the flow of v. Here we emphasize that by vx we always denote the partial derivative of v with
respect to the first variable, and not the derivative of the composition.

Let Jpx, tq “ e´
şt
0 vxpΦpx,sq,sqds. We have the following representation:

f1pΦpx, 1qq “ f0pxq `

ż 1

0
zpΦpx, tq, tqdt “ f0pxq ` zpx, 0q

ż 1

0
Jpx, tq dt.

where the first equality follows from Lemma 2.7. This allows us to determine zpx, 0q and hence

(19) zpΦpx, tq, tq “ pf1pΦpx, 1qq ´ f0pxqq
Jpx, tq

ş1
0 Jpx, τqdτ

.

Hence we have the following formula for fpΦpx, tq, tq

fpΦpx, tq, tq “ f0pxq `

ż t

0
zpΦpx, sq, sq ds “ f0pxq ` pf1pΦpx, 1qq ´ f0pxqq

şt
0 Jpx, sqds
ş1
0 Jpx, sqds

“ p1´ ηpx, tqq f0pxq ` ηpx, tq f1pΦpx, 1qq, where ηpx, tq “

şt
0 Jpx, sqds
ş1
0 Jpx, sqds

.(20)

Equation (20) implies that at any t P r0, 1s and a fixed x P r0, 1s, fpΦpx, tq, tq is an interpolation between
the initial condition f0pxq “ f0pΦpx, 0qq and the final-time condition f1pΦpx, 1qq, with a time-dependent
weight function ηpx, tq determined by the velocity v.

We note that if pf, v, zq P Apf0, f1q then f is a weak solution of ft ` fxv “ z. We show in Section
3.1, equation (36) that if the path is a critical point of the action then z solves the continuity equation
zt ` pzvqx “ 0. The formulas (20) and (19) provide the Lagrangian representation formulas for f and z.
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Lemma 2.9. Let f0 P L2p0, 1q, v P L2p0, 1, H2p0, 1q X H1
0 p0, 1qq, z P L2pp0, 1q2q. If f has the

representation (16) then

max
0ďtď1

}fp¨, tq}L2p0,1q ď expp
?

2}v}L2p0,1,H2p0,1qqqp}f0}L2p0,1q ` }z}L2pp0,1q2qq.

Proof. Let DΦp¨, tq be the spatial derivative of Φp¨, tq. Notice that that for every x P r0, 1s

BtDpΦpx, tqq “ DpBtΦpx, tqq “ DpvpΦpx, tq, tqq “ vxpΦpx, tq, tqqDΦpx, tq.

Integrating in t, since DΦpx, 0qq “ 1

(21) DΦpx, tq “ exp

ˆ
ż t

0
vxpΦpx, sq, sqqds

˙

ď expp
?

2t}v}L2p0,1,H2p0,1qqq,

where the constant
?

2 comes form the embedding H1
0 pp0, 1qq ãÑ L8pp0, 1qq. Therefore

(22) expp´
?

2t}v}L2p0,1,H2p0,1qqq ď DΦpx, tq ď expp
?

2t}v}L2p0,1,H2p0,1qqq

since for every t P r0, 1s

(23)
ˇ

ˇ

ˇ

ˇ

ż t

0
vxpΦp ¨ , sq, sqqds

ˇ

ˇ

ˇ

ˇ

ď

ż t

0
}vxpΦp ¨ , sq, sqq}L8p0,1q ds ď

?
2t}v}L2p0,1,H2p0,1qq.

By Lemma 2.7, for a.e. y P r0, 1s, t P r0, 1s,

(24) fpy, tq “ f0pΦp ¨ , tq
´1pyqq `

ż t

0
zpΦpΦp ¨ , tq´1pyq, sq, sq ds.

By change of variables, for the first term on the right-hand side of (24)
ż 1

0
f2

0 pΦp ¨ , tq
´1pyqqdy “

ż 1

0
f2

0 pΦp ¨ , tq
´1pyqqDΦp ¨ , tq´1DΦp ¨ , tq dy

ď }f0}
2
L2p0,1q expp

?
2}v}L2p0,1,H2p0,1qqq.

For the second term on the right-hand side of (24), using estimate (22) twice and applying Jensen’s
inequality,

›

›

›

›

ż t

0
zpΦpΦp ¨ , tq´1, sq, sqds

›

›

›

›

L2p0,1q

ď expp
?

2}v}L2p0,1,H2p0,1qqq}z}L2pp0,1q2q

Plugging the above estimates into (24) we obtain

}fp¨, tq}L2 ď }f0}L2p0,1q exp

ˆ

?
2

2
}v}L2p0,1,H2p0,1qq

˙

` expp
?

2}v}L2p0,1,H2p0,1qqq }z}L2pp0,1q2q

ď expp
?

2}v}L2p0,1,H2p0,1qqqp}f0}L2p0,1q ` }z}L2pp0,1q2qq.

Therefore, max
0ďtď1

}fp ¨ , tq}L2p0,1q ď exp
`?

2}v}L2p0,1,H2p0,1qqqp}f0}L2p0,1q ` }z}L2pp0,1q2q

˘

.

�

Remark 2.10. We note that we can combine Remark 2.8 and formula (21) to get another representation of
the weak solution of Btz ` Bxpvzq. Namely z is characterized by

zpΦpx, tq, tqDΦpx, tq “ zpx, 0q

for a.e. x, t.
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Lemma 2.11. Given v P V , z P L2pp0, 1q2q. Let f0 P L
2p0, 1q. If f P L2pp0, 1q2q is a weak solution to

the initial value problem
fp¨, 0q “ f0, Btf ` Bxf ¨ v “ z,

in the sense that for every φ P C8pr0, 1s2q,

´

ż 1

0

ż 1

0
fBtφ dx dt´

ż 1

0
f0pxqφpx, 0q dx

“

ż 1

0

ż 1

0
fφBxv dx dt`

ż 1

0

ż 1

0
fBxφv dx dt`

ż 1

0

ż 1

0
φz dx dt.

(25)

Then f P Cp0, 1, H´1q and

}Btf}L2p0,1,H´1q ď

”

1` }v}L2p0,1,H2q expp
?

2}v}L2p0,1,H2qq

ı

p}f0}L2p0,1q ` }z}L2pp0,1q2qq.

Proof. For any φ P L2pp0, 1q, H1p0, 1qq
ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
pfBxv ` zq φ dxdt`

ż 1

0

ż 1

0
fvBxφ dxdt

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0
}fp¨, tq}L2}Bxvp¨, tq}L2}φp¨, tq}L8 ` }fp¨, tq}L2}vp¨, tq}L8}Bxφp¨, tq}L2dt

` }z}L2pp0,1q2q}φ}L2pp0,1q2q

ď

´?
2}f}L8p0,1,L2q }v}L2p0,1,H1q ` }z}L2pp0,1q2q

¯

}φ}L2p0,1,H1q,

Thus if we define Btfptq to be the mapping from H1 to R defined by

xBtfptq, gy “

ż 1

0
pfp ¨ , tqBxvp ¨ , tq ` zp ¨ , tqqg dx`

ż 1

0
fp ¨ , tqvp ¨ , tqBxg dx

we see that Btf P L2p0, 1, H´1p0, 1qq and its norm is controlled by the right hand side of the inequality
above. Furthermore from the definition of weak solution (4) follows that Btf is indeed a weak derivative
in time of f in H´1. Therefore f P Cp0, 1, H´1q.

Therefore, combining Lemma 2.9 and the above estimates, we derive that

}Btf}L2p0,1,H´1q ď }z}L2pp0,1q2q `
?

2}v}L2p0,1,H2q}f}L8p0,1,L2q

ď r1`
?

2}v}L2p0,1,H2q expp
?

2}v}L2p0,1,H2qqs ¨ p}f0}L2p0,1q ` }z}L2pp0,1q2qq
(26)

�

Now we prove Theorem 2.6.

Proof of Theorem 2.6. To apply the direct method of calculus of variations to show the existence of a
minimizing path, we show compactness and lower-semicontinuity.

We recall that by claim (i) of Proposition 2.1 we know that there exists a path of finite action. Thus
for any minimizing sequence pfn, vn, znq, we have that tvnunPN is bounded in L2p0, 1, H2 XH1

0 q and
tznunPN is bounded in L2pp0, 1q2q. Since pL2pp0, 1q, Hsp0, 1qqq˚ “ L2pp0, 1q, H´sp0, 1qq for any s ,
Banach-Alaoglu Theorem allows us to extract a subsequence, still denoted by pvn, znq, such that vn á v
and zn á z weakly in L2p0, 1, H2p0, 1q XH1

0 p0, 1qq and L2pp0, 1q2q, respectively.
Since H2p0, 1q ãÑ C1p0, 1q, vn P L2p0, 1, C1p0, 1qq. By Lemma 2.7, fn has the representation (16)

with v, z,Φ replaced by vn, zn,Φn respectively.
We claim that along a subsequence

(27) fn Ñ f in L2p0, 1, H´
1
2 p0, 1qq.
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First notice that by Lemma 2.9, tfnunPN is a bounded set in L8p0, 1, L2p0, 1qq. There exists f P
L8p0, 1, L2p0, 1qq such that up to a subsequence, fn

˚
á f in L8p0, 1, L2p0, 1qq. By relabeling we asume

that the subsequence is the whole sequence. In addition,

}f}L8p0,1,L2p0,1qq ď lim inf
nÑ8

}fn}L8p0,1,L2p0,1qq.

Applying Lemma 2.11 to pfn, vn, znq, tBtfnunPN is a bounded set in L1p0, 1, H´1p0, 1qq. By Lions-
Aubin lemma [12], since tfnunPN is a bounded set in L2p0, 1, L2p0, 1qq, and H´1 ãÑ H´

1
2 ãÑ L2

compactly, there exists f̃ in L2p0, 1, H´
1
2 p0, 1qq, such that up to a subsequence (still denoted by fn)

such that fn Ñ f̃ in L2p0, 1, H´
1
2 p0, 1qq. In fact, f̃ “ f . Namely f is the weak * limit of fn in

L8p0, 1, L2p0, 1qq, and thus the weak limit in L2p0, 1, H´
1
2 p0, 1qq. By the uniqueness of weak limit,

f̃ “ f .
To summarize: there exists f P L2pp0, 1q2q, v P V and z P L2pp0, 1q2q such that

fn
˚
á f in L8p0, 1, L2p0, 1qq

fn Ñ f in L2p0, 1, H´
1
2 p0, 1qq

zn á z in L2p0, 1, L2p0, 1qq

vn á v in L2p0, 1;H2p0, 1qq.

Now pass to the limit in (4). Since φ P C8pr0, 1s2q. First consider the term
ş1
0

ş1
0 fnφBxvn dx dt.

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fnφBxvn dx dt´

ż 1

0

ż 1

0
fφBxv dx dt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fnφBxvn dx dt´

ż 1

0

ż 1

0
fφBxvn dx dt

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fφBxvn dx dt´

ż 1

0

ż 1

0
fφBxv dx dt

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0
}fn ´ f}

H´
1
2 p0,1q

}φBxvn}
H

1
2 p0,1q

dt`

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fφpBxvn ´ Bxvqdx dt

ˇ

ˇ

ˇ

ˇ

ď}fn ´ f}
L2pp0,1q,H´

1
2 p0,1qq

sup
nPN

}φBxvn}
L2pp0,1q,H

1
2 p0,1qq

`

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fφpBxvn ´ Bxvq dx dt

ˇ

ˇ

ˇ

ˇ

“: A1 `B1,

Consider A1. For every t, }φBxvn}
H

1
2
ď C}φ}H1}Bxvn}

H
1
2
ď C}φ}C1}Bxvn}

H
1
2

by multiplication of
Sobolev functions (see Theorem 7.4 of [5]). Then

sup
nPN

}φBxvn}
L2pp0,1q,H

1
2 p0,1qq

ď C max
tPr0,1s

}φptq}C1 sup
nPN

}Bxvn}
L2pp0,1q,H

1
2 p0,1qq

ď Cφ sup
nPN

}vn}L2pp0,1q,H2p0,1qq,

where the constant Cφ only depends on φ. Combining with fn Ñ f in L2p0, 1, H´
1
2 p0, 1qq, we obtain

that A1 Ñ 0 as nÑ 8. B1 Ñ 0 since φf P L2p0, 1, L2p0, 1qq which could serve as a test function for
Bxvn á Bxv in L2p0, 1, H1p0, 1qq. By analogous argument,

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
fnvnBxφ dx dt´

ż 1

0

ż 1

0
fvBxφ dx dt

ˇ

ˇ

ˇ

ˇ

Ñ 0.

For the other terms in (4), passing to the limit is straightforward. Therefore f satisfies (4). By Lemma
2.11, f P Cp0, 1, H´1p0, 1qq.
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The lower semicontinuity of the action function follows directly from the lower-semicontinuity of
norms with respect to the weak convergence. Therefore pf, v, zq is a minimizer.

�

Showing that dHV is a metric on L2p0, 1q is straightforward. In particular the triangle inequality is
obtained by concatenating minimizers with arc-length parameterization in which

dHV pκ,λ,εq “

ż 1

0

d

1

2

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dx dt “
b

Aκ,λ,εpf, v, zq.

The existence of such raparameterization follows from reparameterization result which states that any
admissible path pf, v, zq can be reparameterized in time by any absolutely continuous diffeomorphism of
r0, 1s. The lemma is a just variation of the lemma on rescaling of distributional solutions to continuity
equations (see Lemma 8.1.3 of [2]).

Lemma 2.12. Let t :“ s P r0, 1s Ñ tpsq P r0, 1s be strictly increasing absolutely continuous map with
absolutely continuous inverse s :“ t´1. In addition, tp0q “ 0, tp1q “ 1. Then pfpx, tq, vpx, tq, zpx, tqq is
a weak solution of

Btf ` Bxf ¨ v “ z in r0, 1s ˆ r0, 1s

with boundary condition fp¨, 0q “ f0, fp¨, 1q “ f1 if and only if

f̂px, sq “: fpx, tpsqq, v̂px, sq “ t1psqvpx, tpsqq, ẑpx, sqq :“ t1psqzpx, tpsqq

is the weak solution of solution of

Bsf̂ `∇f̂ ¨ v̂ “ ẑ in r0, 1s ˆ r0, 1s

with boundary condition f̂p¨, 0q “ f0, f̂p¨, 1q “ f1.

Lemma 2.13. The distance dHV is metric on L2p0, 1q.

Proof. We claim that the positivity follows from the existence of minimizers in Proposition 2.6. If
f0 “ f1 in L2p0, 1q, it is obvious that dHV pf0, f1q “ 0. Consider the case f0 ‰ f1 in L2p0, 1q.
Observe that for pf, v, zq P A, we could reparameterize by arc length in time to make the quantity
´

ş1
0 κv

2px, sq ` λv2
xpx, sq ` εv

2
xxpx, sq ` z

2px, sq dx
¯

1
2 constant in s,with the reparameterization de-

noted by pf̂ , v̂, ẑq. In particular, the reparameterization and its inverse are almost everywhere differentiable.
Applying Lemma 2.12 and changing variables, by Jensen’s inequality we have

Apκ,λ,εqpf̂ , v̂, ẑq ď Apκ,λ,εqpf, v, zq.

According to Jensen’s inequality, if pf, v, zq is a minimizer of Apf, v, zq then it is simultaneously

the minimizer of
ş1
0

b

1
2

ş1
0 κv

2 ` λv2
x ` εv

2
xx ` z

2 dx dt. The existence of minimizer implies that
dHV pf0, f1q ą 0, since otherwise the minimizer fpx, tq is constant and f0 ” fp¨, tq ” f1 which yields
contradiction.

The symmetry is direct from the definition. The triangle inequality follows from path concatenation.
Consider f0, f1, f2 P L

2p0, 1q. Let pf01, v01, z01q be the minimizing path between f0 and f1 and let
pf12, v12, z12q be the minimizing path between f1 and f2. Define

f̃ptq “

#

f01p2tq for t P r0, 1
2 s

f12p2t´ 1q for t P p1
2 , 1s.

ṽptq and z̃ptq are defined analogously. It immediately gives that dHV pf0, f2q ď dHV pf0, f1q`dHV pf1, f2q.
�
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2.4. Completeness of the dHV metric space and the characterization of its topology. Thus far, we
have shown that dHV is a metric on L2. We now establish completeness.

Proposition 2.14. The metric space pL2p0, 1q, dHV q is complete.

Proof. Notice that dHV pκ,λ,εq — dHV p1,1,1q, it suffices to consider dHV p1,1,1q.
Let tgnunPN Ă L2p0, 1q be a Cauchy sequence in dHV . Without a loss of generality, we assume that

for all n P N, dHV pg1, gnq ď 1. By Proposition 2.6, for n ą 1, let pg1,n, v1,n, z1,nq denotes the minimizer
of the action Apf, v, zq with the admissible set Apg1, gnq. Then Lemma 2.9 and the definition of dHV
give that

}gn}L2p0,1q ď expp
?

2}v1,n}L2p0,1,H2p0,1qqqp}g1}L2p0,1q ` }z1,n}L2pp0,1q2qq

ď expp
?

2dHV pg1, gnqqp}g1}L2p0,1q ` dHV pg1, gnqq

ď expp
?

2qp}g1}L2p0,1q ` 1q.

Then Banach-Alaoglu Theorem gives that there exists a subsequence gnk converges to some g8 P L2p0, 1q
weakly in L2p0, 1q. We denote the subsequence as tg̃nunPN.

On the other hand, there exists further subsequences (which we relabel to be the original subsequence)
tv1,nu ,tz1,nu and v1,8, z1,8 such that

v1,n á v1,8, weakly in L2p0, 1, H2p0, 1qq,

z1,n á z1,8, weakly in L2pp0, 1q2q.

Meanwhile, by Lemma 2.11, tBtg1,nunPN is a bounded set in L2p0, 1, H´1p0, 1qq. Then Lions-Aubin
Lemma gives that up to a subsequence g1,n Ñ g1,8 in L2p0, 1, H´

1
2 p0, 1qq. Moreover we have g1,n á

g1,8 weakly * in L8p0, 1, L2p0, 1qq.
Up to a subsequence,

gn á g8 in L2p0, 1q

g1,n
˚
á g1,8 in L8p0, 1, L2p0, 1qq

g1,n Ñ g1,8 in L2p0, 1, H´
1
2 p0, 1qq

z1,n á z1,8 in L2p0, 1, L2p0, 1qq

v1,n á v1,8 in L2p0, 1, H2p0, 1qq.

By a similar argument as in the proof of Theorem 2.6, we could verify that pg1,8, v1,8, z1,8q is in the
admissible set Apg1, g8q. Thus

d2
HV pg1, g8q ď lim inf

nÑ8
}v1,n}

2
L2p0,1,H2p0,1qq ` lim inf

nÑ8
}z1,n}

2
L2pp0,1q2q ď lim inf

nÑ8
d2
HV pg1, gnq.

Then without loss of generality, we could take a further sequence in tg̃nunPN such that for every n, for
any m ě n, dHV pg̃m, g̃nq ă 1

n . We repeat the above arguments with g1 replaced by g̃n. Then we have

d2
HV pg̃n, g8q ď lim inf

mÑ8
d2
HV pg̃n, g̃mq ă

1

n2
.

Now we have a subsequence tg̃nunPN that converges to g8 in dHV . For any δ ą 0, there exists K1 P N
such that 1

K1
ă δ

2 . And there exists K2 ą 0 such that for all m1,m2 ą K2, dHV pgm1 ,gm2 q
ă δ

2 . Choose
N “ maxtK1,K2u,

dHV pgn, g8q ď dHV pgn, g̃N q ` dHV pg̃N , g8q ă δ,

which gives that gn Ñ g8 in dHV . �
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Our next goal is to show that convergence in dHV implies convergence in L2. Towards that goal we
first prove the following estimate.

Lemma 2.15. For any f0, f1 P L
2p0, 1q and g0 P C

8. Let pf, v, zq be a minimizer of the action with the
admissible set Apf0, f1q and ψ :“ Φp¨, 1q, where Φpx, tq is the flow map of vpx, tq. Define g1 “ g0 ˝ ψ

´1.
Then g1 P C

1, satisfies
ş1
0 |g

1
1|dx “

ş1
0 |g

1
0|dx and

}f1 ´ g1}L2 ď expp
?

2dHV pf0, f1qq r}f0 ´ g0}L2 ` dHV pf0, f1qs.(28)

Proof. ψ´1 is a C1 diffeomorphism immediately gives that g1 P C
1 and

ş1
0 |g

1
0| dx “

ş1
0 |g

1
1|dx. Recall

that by (22), we have

|DΦp¨, tq| ď expp
?

2t}v}L2p0,1,H2p0,1qqq, @t P r0, 1s.

In particular,

(29) |Dψ| ď expp
?

2}v}L2p0,1,H2p0,1qqq.

By Lemma 2.7, for a.e. y P r0, 1s,

f1pyq ´ g1pyq “ f0pψ
´1pyqq `

ż 1

0
zpΦpψ´1pyq, sq, sqds´ g0pψ

´1pyqq.

By an analogous estimate as in the proof of Lemma 2.9, we have

}f1 ´ g1}L2 ď

›

›

›

›

ż 1

0
zpΦpψ´1p ¨ q, sq, sq ds

›

›

›

›

L2

` }f0 ˝ ψ
´1 ´ g0 ˝ ψ

´1}L2

ď expp
?

2}v}L2p0,1,H2p0,1qqq}z}L2pp0,1q2q ` exp

ˆ

?
2

2
}v}L2p0,1,H2p0,1qq

˙

}f0 ´ g0}L2

ď expp
?

2dHV pf0, f1qqr}f0 ´ g0}L2 ` dHV pf0, f1qs.

(30)

�

Theorem 2.16. Let tfnunPN Ď L2p0, 1q. If fn Ñ f in dHV , then fn Ñ f in L2.

Proof. It suffices to show the conclusion dHV p1,1,1q. We will prove this by showing that for any subse-
quence of tfnunPN, there exists a further subsequence that converges to f in L2.

Let K :“ 2 expp
?

2q. Let 0 ă δ ă 1 be arbitrarily chosen. By extracting a subsequence, we can
assume that for every n, dHV pfn, fq ď δ

3K ă 1. Since C8 is dense in L2, there exists g P C8 such
that }f ´ g}L2 ď δ

3K . For any n, let ψn be the time-1 flow map of vn, where pfn, vn, znq denotes the
minimizer of the action Apf, v, zq with the admissible set Apf, fnq. Take gn :“ g ˝ ψ´1

n if fn ‰ f , and
take gn “ g if fn “ f .

We will show that tgnunPN is a bounded set in W 1,2p0, 1q. Thus without loss of generality, we assume
fn ‰ f . By Lemma 2.15,

}fn ´ gn}L2 ď expp
?

2dHV pf, fnqqr}f ´ g}L2 ` dHV pf, fnqs ă
δ

3
.(31)

On the other hand, by change of variables,

}gn}
2
L2 ď }g}

2
L2}Dψn}L8 ď }g}

2
L2 expp

?
2}vn}L2p0,1,H2p0,1qqq,

where we use the estimate (29) with ψ, v replaced by ψn, vn. Then we have

}gn}L2 ď }g}L2 exp

ˆ

?
2

2
dHV pf, fnq

˙

ď }g}L2 exp

ˆ

?
2

2

˙

,
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which implies that tgnunPN is a bounded set in L2. Since ψ´1
n is the time-1 flow of vnp¨, 1´ tq, by (21),

ż 1

0
|Dgn|

2 dx ď expp
?

2}vn}L2p0,1,H2p0,1qqq}g
1}2L2 ď expp

?
2dHV pf, fnqq}g

1}2L2

which implies that tDgnunPN is a bounded set in L2. Thus gn PW 1,2p0, 1q and

sup
n
}gn}W 1,2 ă expp

?
2q
“

}g}L2 ` }g1}2L2

‰

.

Hence tgnunPN is a bounded set in W 1,2p0, 1q. By Morrey’s inequality and Arzela-Ascolli compactness
criterion, there exists a subsequence gnk that is Cauchy in L2. For sufficiently large N , for any i, j ą N ,
we have }gni ´ gnj}L2 ă δ

3 . Thus

}fni ´ fnj}L2 ď }fnj ´ gnj}L2 ` }gnj ´ gni}L2 ` }fni ´ gni}L2 ă δ.

This implies that up to a subsequence, tfnkukPN is a Cauchy sequence in L2. By completeness of L2, it
converges to some f̃ P L2. f̃ is also the weak limit of the subsequence in L2, by the uniqueness of weak
limit, we should have f̃ “ f (recall that f is the weak limit of a subsequence of tfnkukPN.)

Therefore, up to a subsequence, fn Ñ f in L2. For any subsequence fn Ñ f , it admits a further
subsequence that converges to f . This proves that for the whole sequence, fn Ñ f in L2. �

3. PROPERTIES OF GEODESICS.

3.1. Euler–Lagrange Equations. Assume pf, v, zq P Apf0, f1q is a minimizer of the action (2) over
the admissible set (3). Below we describe the first-order optimality conditions, first for general paths,
(33) and (36), and then under assumption that f0, f1 P H

1p0, 1q, in which case all conditions are partial
differential equations.

To find the first-order optimality conditions, in other words the Euler–Lagrange equations, we first
fix f and perform the first variation in v and z. Motivated by a similar reasoning as in Section 2.2, we
introduce the space,

(32) RT pfq “
 

u P L2p0, 1, H2p0, 1q XH1
0 p0, 1qq : uf P L2p0, 1, H1p0, 1qq

(

.

Note that for u P RT pfq, for a.e. t P r0, 1s, ufx “ pufqx ´ uxf P L2pp0, 1q2q.
Now we characterize the optimality condition analogous to that in Lemma 2.5. Taking u P RT pfq and

h “ ufx, which belongs to L2pp0, 1q2q, we have that, for any s P R, pf, v ` su, z ` shq satisfies the
equation (4), and thus pf, v ` su, z ` shq P Apf0, f1q . First variation of action (2) gives that pf, v, zq
satisfies:

(33) @u P RT pfq

ż 1

0

ż 1

0
κvu` λvxux ` εvxxuxx ` zpufxq dxdt “ 0.

We then turn to the optimality of z. To carry out the argument let us denote that minimizer of the
action considered by pf̄ , v̄, z̄q. Then pf̄ , z̄q is a critical point of Ãpzq “

ş1
0

ş1
0 z

2dxdt over the set of
pf, v, zq P Apf0, f1q such that v “ v̄. This is a convex functional over linear constraint. Thus pf̄ , z̄q is a
global minimizer for fixed v̄.

Furthermore by Lemma 2.7, the constraint that pf, v, zq P Apf0, f1q, with v “ v̄ can be expressed as
follows: for a.e. x, t

(34) fpΦpx, tq, tq “ f0pxq `

ż t

0
zpΦpx, sq, sq ds.

In other words z needs to satisfy that for a.e. x P p0, 1q

(35) f1pΦpx, 1qq ´ f0pxq “

ż 1

0
zpΦpx, tq, tqdt



18 RUIYU HAN, DEJAN SLEPČEV, AND YUNAN YANG

while fp ¨ , tq for 0 ă t ă 1 is defined by (34). Since f does not enter the action directly, we minimize over
z alone and define f by (34). After the change of variables Ãpzq “

ş1
0

ş1
0 z

2pΦpx, tq, tqDΦpx, tqdxdt.
Hence if we define wpx, tq “ zpΦpx, tq, tq the problem is transformed to

minimize
ż 1

0

ż 1

0
w2px, tqDΦpx, tqdxdt

under constraint: f1pΦpx, 1qq ´ f0pxq “

ż 1

0
wpx, tq dt for a.e. x P p0, 1q.

By Cauchy-Schwarz inequality, the minimizer w of this problem should satisfy that wpx, tqDΦpx, tq is
independent of time. Thus z which minimizes Ã satisfies that for a.e. x

zpΦpx, tq, tqDΦpx, tq “: zpx, 0q.

By Remark 2.10, this implies that z is a weak solution of

(36) Btz ` Bxpzvq “ 0 on p0, 1q2,

which is the desired first-order condition on z.

If f0, f1 P H
1p0, 1q then we establish in the Proposition 3.1 below that the minimizing path f P

L2p0, 1, H1p0, 1qq. In that case we the resulting Euler–Lagrange equations satisfied by f, v, z, combined
with the condition for belonging to Apf0, f1q can be expressed as follows:

εvxxxx ´ λvxx ` κv ` zfx “ 0 weakly on p0, 1q2(37)

v “ 0 and vxx “ 0 on BΩˆ r0, 1s(38)

zt ` pzvqx “ 0 weakly on p0, 1q2(39)

ft ` fxv ´ z “ 0 weakly on p0, 1q2(40)

fp ¨ , 0q “ f0, and fp ¨ , 1q “ f1.(41)

The first equations, and boundary conditions, follow directly from (33). The other conditions are identical
as before.

3.2. Regularity of geodesics. This subsection presents results regarding the regularity of the geodesics.

Proposition 3.1. Assume f0, f1 P H
1 and let pf, v, zq P Apf0, f1q be an action minimizing path. Then

f P L8p0, 1, H1p0, 1qq, with quantitative estimates on the norm (45), (46).

Proof. We remark that the existence of action minimizing pf, v, zq P Apf0, f1q is guaranteed by Theorem
2.6. The argument in Section 3.1 implies that z solves zt ` pzvqx “ 0, weakly. As in Remark 2.8, z
satisfies the formula (19) and f satisfies (20). By Theorem 2.2.2 in [42], since Φp ¨ , tq is bi-Lipschitz in
x it suffices to check if fpΦpx, tq, tq P H1. We use the composition with Φ in several instances below.

Let b :“ e
?

2}v}L2p0,1,H2q . Recall from (22) that for all x P r0, 1s and t P r0, 1s
1

b
ď |DΦpx, tq| ď b.

Note that for all t, }
şt
0 vxpΦp ¨ , sq, sq ds}L8 ď }vx}L1p0,1,L8q ď

?
2}v}L2p0,1,H2q. Thus for all px, tq

(42)
1

b
ď Jpx, tq ď e

?
2}v}L2p0,1,H2q “ b.

Change of variables provides that, for a.e. t,
ż 1

0
pBxvxpΦpx, tq, tqq

2dx ď }DΦp ¨ , tq}L8}vxxptq}
2
L2pp0,1qq ď b}v}L2p0,1,H2q.
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Integrating in t and Cauchy-Schwarz inequality imply that for all t P r0, 1s
›

›

›

›

Bx

ż t

0
vxpΦpx, sq, sqds

›

›

›

›

2

L2p0,1q

ď tb }v}2L2p0,1,H2q.

Combining with the chain rule and the L8 estimate on J implies that J P L8p0, 1, H1p0, 1qq and

(43) @t P r0, 1s

›

›

›

›

ż t

0
Jpx, sqds

›

›

›

›

H1p0,1q

ď b` b3{2 }v}L2p0,1,H2q

Since J ě 1
b , 1{

ş1
0 Jpx, tqdt is in H1p0, 1q. By chain rule [18],

(44)
›

›

›

›

Bx

ˆ

1{

ż 1

0
Jpx, tqdt

˙
›

›

›

›

L2

ď b2
›

›

›

›

Bx

ˆ
ż 1

0
Jpx, tqdt

˙
›

›

›

›

L2

ď b
7
2 }v}L2p0,1,H2q.

Moreover by change of variables and estimate (22), }Bxf1pΦpx, 1qq}L2 ď
?
b}Bxf1}L2 . From (19), (42),

(43), and (44), via the product rule and using that }gh}L2 ď }g}L2}h}L8 , we obtain

}BxzpΦpx, ¨ q, ¨ q}L2pp0,1q2q ď p}Bxf1pΦp ¨ , 1qq}L2 ` }Bxf0}L2qb2

` p}f1pΦp ¨ , 1qq}L8 ` }f0}L8qpb
5
2 ` b

9
2 q}v}L2p0,1,H2q

ď 3p}f1}H1 ` }f0}H1qpb
5
2 ` b

9
2 }v}L2p0,1,H2qq.

Note also that, via change of variables,
ż 1

0

ż 1

0
z2pΦpx, tq, tqdxdt ď b}z}2L2pp0,1q2q ď b}f1 ´ f0}

2
L2 .

From (20), by a change of variables and estimate (22), for every t P r0, 1s,

(45) }Bxfp ¨ , tq}L2p0,1q ď
?
b}BxfpΦp ¨ , tq, tq}L2 ď 6p}f1}H1 ` }f0}H1qp1` b3 ` b5}v}L2p0,1,H2qq,

which using that }v}L2p0,1,H2q ď Cε}f1 ´ f0}L2 can be turned in an estimate where right-hand side
depends only on initial and final signal.

The estimate on }fp ¨ , tq}L2 from Lemma 2.9 and the estimate on z above provide that

(46) }fp ¨ , tq}L2p0,1q ď bp}f0}L2 `
?
b}f0 ´ f1}L2q,

which completes the proof. �

Remark 3.2. The regularity above can be improved to spaces with more regularity. Here we now outline
argument that if f0 and f1 ate smooth then fp ¨ , tq is smooth for all t P r0, 1s. For f0, f1 P H

1p0, 1q
Proposition 3.1 gives that the minimizing path f P L8p0, 1, H1p0, 1qq and z P L8p0, 1, H1p0, 1qq. Thus
in equation (37), zfx P L2p0, 1q for every t P r0, 1s. The results on elliptic boundary value problems
imply vp ¨ , tq P H4p0, 1q. Moreover, there exists a constant C such that

}vp ¨ , tq}H4p0,1q ď Cp}zfxp ¨ , tq}L2 ` }vp ¨ , tq}H2q.

Thus
}v}L2p0,1,H4q ď Cp}z}L2p0,1,H1q}f}L2p0,1,H1q ` }v}L2p0,1,H2qq,

where the right-hand side, by Proposition 3.1, is a function only depending on f0 and f1.
According the differentiability of ODE solution with respect to parameters, we obtain that for fixed

t, the flow map Φpx, tq P C3p0, 1q. In addition, Φpx, tq P L8p0, 1, C3q. Indeed, D2Φpx, tq satisfies the
equation:

BtD
2Φpx, tq “ pvxpΦpx, tq, tqq

2pDΦpx, tqq2 ` vxpΦpx, tq, tqD
2Φpx, tq.

By Gronwall’s inequality and (22) we obtain that D2Φ P L8pp0, 1q2q. Inductively, Φ P L8p0, 1, C3q.
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Now we assume that f0, f1 P H4p0, 1q. The above discussion gives that v P L2p0, 1, H4q and
Φ P L8p0, 1, C3q. Applying chain rule to (19) and following a similar argument as in the proof of
Proposition 3.1, we have that z P L8p0, 1, H3p0, 1qq. Then by (20), f P L8p0, 1, H3p0, 1qq, with
}f}L8p0,1,H3p0,1qq bounded by a function of f0 and f1.

By an iterative argument, we conclude that for any k P N, f, z P L8p0, 1, Hkp0, 1qq and v P
L2p0, 1, Hkp0, 1qq, which implies the smoothness of fp ¨ , tq.

3.3. Stability of geodesics. Next, we study the stability of the geodesic in terms of a subsequence
approximation.

Proposition 3.3. Assume f0, f1 P L
2p0, 1q, fn0 , f

n
1 P L

2p0, 1q for all n P N, and fn0 Ñ f0, fn1 Ñ f1

in L2p0, 1q as n Ñ 8. Let pfn, vn, znq P Apfn0 , fn1 q be action minimizing paths. Then there exists
pf, v, zq P Apf0, f1q such that along a subsequence

fn
˚
á f in L8pp0, 1q, L2p0, 1qq

fn Ñ f in Cpp0, 1q, pL2p0, 1q, dHV qq

zn á z in L2pp0, 1q, L2p0, 1qq

vn á v in L2pr0, 1s;H2p0, 1qq.

Furthermore pf, v, zq is an action minimizing path between f0 and f1.

Proof. Since

(47) dHV pf
n
0 , f

n
1 q ď }f

n
0 ´ f0}L2 ` dHV pf0, f1q ` }f

n
1 ´ f1}L2 ,

we conclude that Apfn, vn, znq ď d2
HV pf0, f1q ` 1 ď }f0 ´ f1}

2
L2 ` 1 for all n large enough. We can

assume, without loss of generality that the inequalities hold for all n. The proof of weak convergence
mirrors the proof of Theorem 2.6. To show that pf, v, zq is an action minimizing path, we note that
by lower-semicontinuity Apf, v, zq ď lim infnÑ8Apf

n, vn, znq. Since Apfn, vn, znq “ d2
HV pf

n
0 , f

n
1 q,

from (47) follows that Apf, v, zq ď d2
HV pf0, f1q. Thus Apf, v, zq “ d2

HV pf0, f1q.
We claim that for all t, fnp ¨ , tq is precompact in L2. We note that by Lemma 2.9 the sequence fnp ¨ , tq

is uniformly bounded in L2. To show precompactness in L2, by [19][Theorem 2.88] we need to show that
for all δ ą 0 there exists h0 ą 0 such that for all h P r0, h0s and all n

(48) }fnp ¨ ` h, tq ´ fnp ¨ , tq}L2 ă δ.

We proceed with the proof assuming (48), and verity the condition at the end.
Observe that t ÞÑ fnp ¨ , tq is a constant speed curve in pL2p0, 1q, dHV q, since it is a geodesic. Therefore

that family of functions fn considered as functions between r0, 1s and pL2p0, 1q, dHV q are uniformly
Lipschitz and thus equicontinuous. Since we know that tfnp ¨ , tqunPN is precompact in pL2p0, 1q, } ¨ }L2q,
it is precompact in L2 with respect to the dHV metric. Therefore by the Arzela-Ascoli Theorem, for
metric-space valued functions, we get that fn is precompact in Cp0, 1, pL2p0, 1q, dHV q. We note that this
also implies that up to a subequence, fnp ¨ , tq converges to fp ¨ , tq in L2p0, 1q for all t fixed.

We now turn to proving that (48) holds. By (22), for each t, Φt :“ Φp ¨ , tq : and Φ´1
t are Lipschitz and

the Lipschitz constant for both maps and for all t P r0, 1s is bounded by bn :“ expp
?

2}vn}L2p0,1,H2qq.

Next we show that the function ηnpx, tq :“
şt
0 J

npx,sq ds
ş1
0 J

npx,τqdτ
, where Jnpx, tq “ e´

şt
0 v

n
x pΦ

npx,sq,sqds is

Hölder continuous in x. Since vnx is Hölder continuous, we have that for x, y P r0, 1s,

|Jnpx, tq ´ Jnpy, tq| ď ebn
ż t

0
}vnxxp ¨ , sq}L2pLippΦn

s qq
1
2 ds|x´ y|

1
2 ď ebn b

1
2
n }v

n}L2p0,1,H2q|x´ y|
1
2 ,
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since |vxpyq ´ vxpyq| ď |x ´ y|
1
2 }vxx}L2 . This implies that for any 0 ď t ď 1,

şt
0 J

npx, sq ds is in

C0, 1
2 p0, 1q with Hölder constant ebn b

1
2
n }vn}L2p0,1,H2q. Observe that by (42), b´1

n ď Jnpx, tq ď bn. Thus

p
ş1
0 Jpx, τqdτq´1 is Hölder continuous with constant ebn b

5
2
n }vn}L2p0,1,H2q. Therefore for any x, y, for

any t,

|ηnpx, tq ´ ηnpy, tq| ď pbne
bn b

1
2
n ` bne

bn b
5
2
n q }v

n}L2p0,1,H2q|x´ y|
1
2 ď 2ebn b

7
2
n }v

n}L2p0,1,H2q|x´ y|
1
2 .

By change of variables

fnpy, tq “ ηnppΦn
t q
´1pyq, tqfn0 ppΦ

n
t q
´1pyqq ` p1´ ηnpΦ´1

t pyq, tqqf
n
1 pΦ1Φ´1

t pyqq

We note that b :“ suptbn : n P Nu is finite since }vn}2L2p0,1,H2q
ď c}f0 ´ f1}

2
L2 ` 1 by the observation

above, for some c ą 0 depending on λ, κ, and ε.
We extend fn, f0 and f1 by zero to R. We also extend Φn

t as identity (Φn
t pxq “ x) outside of r0, 1s.

Choose g0, g1 P C
8
c pRq such that }f0 ´ g0}L2pRq ă

δ
100b3

and }f1 ´ g1}L2pRq ă
δ

100b3
. Choose Npδq

such that, then for any n ą Npδq, }fn0 ´ f0}L2 ă δ
100b3

, }fn1 ´ f1}L2 ă δ
100b3

. Then for n ą Npδq,

}fn0 ppΦ
n
t q
´1py ` hqq´fn0 ppΦ

n
t q
´1pyqq}L2pRq

ď}fn0 ppΦ
n
t q
´1py ` hqq ´ g0ppΦ

n
t q
´1py ` hqq}L2pRq

` }g0ppΦ
n
t q
´1py ` hqq ´ g0ppΦ

n
t q
´1pyqq}L2pRq

` }g0ppΦ
n
t q
´1pyqq ´ fn0 ppΦ

n
t q
´1pyqq}L2pRq

ď2}DpΦn
t q
´1}

1
2
L8}f

n
0 ´ g0}L2 ` }g0ppΦ

n
t q
´1py ` hqq ´ g0ppΦ

n
t q
´1pyqq}L2pRq

ď
δ

25b2
` bLippg0qh,

Similarly,

}fn1 pΦ
n
1 pΦ

n
t q
´1py ` hqq ´ fn1 pΦ

n
1 pΦ

n
t q
´1pyqq}L2pRq ď

δ

25b2
` b2 Lippg1qh.

Moreover

(49) }ηnppΦn
t q
´1py ` hq, tq ´ ηnppΦn

t q
´1pyq, tq}L8p0,1q ď 2ebn b4n}v

n}L2p0,1,H2qh
1
2 ď Ch

1
2 ,

where C :“ 2 exppbqb4p
?
c}f1 ´ f0}L2 ` 1q.

Therefore,

}fnp ¨ , tq ´ fnp ¨ ` h, tq}L2pRq

ď}ηnppΦn
t q
´1p ¨ ` hq, tqfn0 ppΦ

n
t q
´1p ¨ ` hqq ´ ηnppΦn

t q
´1p ¨ q, tqfn0 ppΦ

n
t q
´1p ¨ qq}L2

` }p1´ ηnpΦ´1
t p ¨ ` hq, tqqf

n
1 pΦ1Φ´1

t p ¨ ` hqq ´ p1´ η
npΦ´1

t p ¨ q, tqqf
n
1 pΦ1Φ´1

t p ¨ qq}L2

ď}ηn}L8}f
n
0 pΦ

n
t q
´1p ¨ ` hq ´ fn0 pΦ

n
t q
´1p ¨ q}L2

` }ηnppΦn
t q
´1p ¨ ` hq, tq ´ ηnppΦn

t q
´1p ¨ q, tq}L8}f

n
0 ˝ pΦn

t q
´1}L2

` }1´ ηn}L8}f
n
1 pΦ

n
1 pΦ

n
t q
´1p ¨ ` hqq ´ fn1 pΦ

n
1 pΦ

n
t q
´1p ¨ qq}L2

` }ηnppΦn
t q
´1p ¨ ` hq, tq ´ ηnppΦn

t q
´1p ¨ q, tq}L8}f

n
1 ˝ Φn

1 ˝ pΦ
n
t q
´1}L2

ďb2
ˆ

δ

25b2
` bLippg0qh

˙

` Ch
1
2 b}fn0 }L2 ` p1` b2q

ˆ

δ

25b2
` b2 Lippg1qh

˙

` Ch
1
2 b}fn1 }L2

ď
3δ

25
` 2b3pLippg0q ` Lippg1qqh` Cbp2` }f0}L2 ` }f1}L2qh

1
2 .
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We pick h0, which depend on f0, f1, g0, g1, such that for all t, for all h P r0, h0s, and n ą Npδq,
(48) holds. For n ď Npδq, there exists hn such that for all h P r0, hns, (48) holds for fn. Take
h̃ :“ minth0, h1, . . . , hNpδqu. For all t, for all h P r0, h̃s, and for all n, (48) holds. �

4. NUMERICAL SCHEME

We propose an iterative minimization scheme to find the minimizers of the action (50) over the
admissible paths (51). We first present two convex sub-problems on the continuous level by fixing v and
f , respectively. By solving each of the sub-problems, the action functional decays monotonically. We
then present our discretization scheme of finding the optimal path based on this problem splitting.

4.1. Two sub-problems. Recall that we are interested in minimizing

Aκ,λ,εpf, v, zq “
1

2

ż 1

0

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dxdt,(50)

over the set of admissible paths defined by

(51) A “ tpf, v, zq : ft “ ´fxv ` z, vp0, ¨q “ vp1, ¨q “ 0, fp¨, 0q “ f0, fp¨, 1q “ f1u.

The Euler–Lagrange equations for this variational problem are given in (37)-(41) under the assumption
that f0, f1 P H

1pp0, 1qq. The numerical methods presented in this section and the experiments in Section 5
are based on the assumptions that the signals are C2pp0, 1qq. Due to the regularity results of Proposition
3.1 and Remark 3.2 as well as the stability result proved in Proposition 3.3, we expect that the geodesics
for regular signals can be used to approximate those for general signals.

We point out that among pf, v, zq, the three variables we optimize over, z is determined by f and v due
to the constraint set (51). However, it is still impractical to directly minimize (50) over (51) due to the
nonlinear constraint. Next, we translate the optimization problem to a fixed-point problem by working
with the system of Euler–Lagrange equations (37)-(41).

More specifically, we find a solution to the Euler–Lagrange equations through two convex optimization
sub-problems. The method alternates between fixing v while finding the optimal pf, zq and fixing f while
searching the optimal pv, zq, both for problem (50)-(51). This method shares similar flavors with many
existing optimization algorithms. First, it is related to the so-called block coordinate descent method [38]
since we alternatingly update pf, zq and pv, zq, the coordinate blocks in our problem. Based on [26,
P. 266], our algorithm also has local convergence since the action function has a unique minimum in each
coordinate block. The fact that our updated new pf, zq or pv, zq is the exact minimizer for each of the
sub-problem, sharing similar features with ADMM [39]. The corresponding optimal pf, zq or pv, zq are
weighted projections onto the linear constraints determined by (37) - (41) (with the other variable fixed).

Lastly, our method shares the same spirit with the so-called sequential quadratic programming (SQP) [7].
For quadratic programming with nonlinear constraints, SQP solves a sequence of optimization sub-
problems using a linearization of the constraints. In our method, we achieve linearization of (51) by fixing
v or f . Next, we will discuss in detail the two important sub-problems.

4.1.1. From v to pf, zq. First, for a given v, we consider the sub-problem of finding pf, zq which
minimize the action (50) under the constraint that pf, v, zq P A for the v fixed. We note that this reduces
to minimizing a convex (in fact, quadratic) objective functional under a linear constraint:

(52) min
f,z

1

2

ż 1

0

ż 1

0
z2 dxdt, s.t. pf, v, zq P A.
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The first-order optimality conditions are given by equations (39), (40) and (41):
zt ` pzvqx “ 0,

ft ` fxv ´ z “ 0,

fp ¨ , 0q “ f0, fp ¨ , 1q “ f1.

(53)

To solve (53), we can use the Lagrangian approach. First, we can obtain a flow map Φpx, tq solving (17),
and an analytical solution for zpΦpx, tq, tq presented in (19). Note that we still need to find the quantity
J in (19). To do so, we observe that, by Lemma 2.7, Jpx, tq “ expp´

şt
0 vxpΦpx, sq, sqdsq is the weak

solution of the following auxiliary initial value problem:

Jt ` pJvqx “ 0 on r0, 1s2, with Jpx, 0q ” 1.

Hence, by (19), we have an analytic formulation for zpΦpx, tq, tq:

(54) zpΦpx, tq, tq “ pf1pΦpx, 1qq ´ f0pxqq
Jpx, tq

ş1
0 Jpx, sqds

.

We also have an analytic formulation for fpΦpx, tq, tq given by (20),

fpΦpx, tq, tq “ p1´ ηpx, tqq f0pxq ` ηpx, tq f1pΦpx, 1qq, where ηpx, tq “

şt
0 Jpx, sqds
ş1
0 Jpx, sqds

.(55)

As a final step, through a change of coordinate, we obtain functions f and z at the px, tq coordinate
(which are used for v), rather than the flow map coordinate pΦpx, tq, tq. At the discrete level, this will
amount to an interpolation step between the points where f and z are computed along the flow, and the
desired grid points.

Combining all steps above, we have defined a continuous operator

G1 : v ÞÑ pz, fq,

which solves (53) and (52). Note that we have pf, v, zq P A automatically if pf, zq “ G1pvq. If we denote
the pf, v, zq from the previous step by pfold, vold, zoldq, where pfold, vold, zoldq P A, we then have

Aκ,λ,εpf, v
old, zq ď Aκ,λ,εpf

old, vold, zoldq.

The steps above yield functions pf, vold, zq satisfying (38), (39), (40), and (41) for the given vold, but
they do not necessarily satisfy (37) in the Euler–Lagrange equations. Otherwise, we have found a set of
solutions satisfying the first-order optimality conditions of (50).

4.1.2. From f to pv, zq. Given f from the previous step, we consider the second sub-problem of finding
the pair pvnew, znewq that minimizes the action (50) under the constraint that pf, v, zq P A. This again is a
quadratic optimization problem under linear constraint:

(56) min
v,z

1

2

ż 1

0

ż 1

0
κv2 ` λv2

x ` εv
2
xx ` z

2 dxdt, s.t. pf, v, zq P A.

Using the Euler–Lagrange equation (37) and the constraint z “ ft ` vfx yields the following fourth
order boundary value problem for v:

εvxxxx ´ λvxx ` pκ` |fx|
2qv “ ´ft fx on p0, 1q2,

v “ 0 on t0, 1u ˆ p0, 1q,

vxx “ 0 on t0, 1u ˆ p0, 1q.

(57)

Given f and the solution v, we also obtain z. Let us denote the solution operator by G2 : f ÞÑ pvnew, znewq.
We note that

(58) Aκ,λ,εpf, v
new, znewq ď Aκ,λ,εpf, v

old, zq.
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Therefore, combining G2 with the previous step in Section 4.1.1, we have the following inequalities
with respect to the action functional:

Aκ,λ,εpf
new, vnew, znewq ď

loomoon

pvnew, znewq “ G2pfq, fnew“f

Aκ,λ,εpf, v
old, zq ď

loomoon

pf, zq “ G1pvoldq

Aκ,λ,εpf
old, vold, zoldq,

where pfnew, vnew, znewq, pf, vold, zq, pfold, vold, zoldq P A, all satisfying the constraints. If we define a
new operator G by composing G2 with G1, i.e.,

(59) G “ G2 ˝ G1 : A ÞÑ A,

it gives an update formula after which the action functional decays:

(60) Aκ,λ,εpGpf, v, zqq ď Aκ,λ,εpf, v, zq.

We can then repetitively applying G until finding a set of solution pf˚, v˚, z˚q where Gpf˚, v˚, z˚q “
pf˚, v˚, z˚q. That is, pf˚, v˚, z˚q is a fixed point of G, while (60) indicates the contractivity of the
fixed-point operator with respect to the action functional. It is easy to verify that pf˚, v˚, z˚q also solves
the Euler–Lagrange equations (37)-(41).

Algorithm 1 An iterative scheme for minimizing (50).

1: Given an initial guess pf p0q, vp0q, zp0qq P A, maximum number of iterations N , tolerance δ ą 0.
2: for n “ 1 to N do
3: Compute pf̃ , z̃q “ G1pv

pnqq with G1 described in Section 4.1.1 and set f pn`1q “ f̃ .
4: Set pvpn`1q, zpn`1qq “ G2pf

pn`1qq with G2 described in Section 4.1.2.
5: if |Aκ,λ,εpf pn`1q, vpn`1q, zpn`1qq ´Aκ,λ,εpf

pnq, vpnq, zpnqq| ă δ then
6: Return

`

f pn`1q, zpn`1q, vpn`1q
˘

and the minimum action value; Break.
7: end if
8: end for

Algorithm 2 An iterative scheme for minimizing (50) with damping.

1: Given an initial guess pf p0q, vp0q, zp0qq P A, maximum number of iterations N , tolerance δ ą 0.
2: for n “ 1 to N do
3: Compute pf̃ , z̃q “ G1pv

pnqq and set f pn`1q “ α1f̃ ` p1´α1qf
pnq, with α1 given by Algorithm 3

4: and G1 described in Section 4.1.1.
5: Compute ppv, pzq “ G2pf

pn`1qq and set pvpn`1q, zpn`1qq “ α2ppv, pzq`p1´α2qpv
pnq, zpn`

1
2
qq, with

6: α2 given by Algorithm 3 and G2 described in Section 4.1.2.
7: if Aκ,λ,ε

`

f pn`1q, vpn`1q, zpn`1q
˘

ą Aκ,λ,ε
`

f pnq, vpnq, zpnq
˘

´ δ then
8: Return

`

f pn`1q, zpn`1q, vpn`1q
˘

and the minimum action value; Break.
9: end if

10: end for
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Algorithm 3 Back-tracking line search for the damping parameter.

1: Given the old iterate pf̄ , v̄, z̄q, the proposed new iterate pf̃ , ṽ, z̃q, the objective function Aκ,λ,ε, and
the maximum number of search steps rN . Set α “ 1, Ā “ Aκ,λ,εpf̄ , v̄, z̄q and FLAG “ 0.

2: for i “ 1 to rN do
3: if Aκ,λ,εpfα, vα, zαq ă Ā where pfα, vα, zαq “ p1´ αqpf̄ , v̄, z̄q ` αpf̃ , ṽ, z̃q then
4: Return α and set FLAG “ 1; Break.
5: end if
6: αÐ α{2.
7: end for
8: if FLAG “ 0 then
9: Return α “ 0.

10: end if

Algorithm 4 Searching for a path minimizing action (50) via different initializations.

1: Given the maximum number of iterations N P N`, δ ą 0, kmax P N.
2: for k “ 0 to kmax do
3: Use the prominence-based matching initialization described in Section 4.3 with parameter k and
4: obtain pf p0q, vp0q, zp0qq.
5: Run Algorithm 2 with N iterations and tolerance δ. Obtain the minimum action value J pkq.
6: end for
7: Find k˚ “ argminJ pkq.
8: Return the optimal path pf, v, zq and its action value J pk˚q for initialization with parameter k˚.

4.2. The discrete scheme. Next, we use a simple first-order numerical scheme to solve the two sub-
problems discussed above. If the signals f0 and f1 are known to be smooth, higher-order discretization
schemes would be recommended for better efficiency and accuracy. If the signals are discontinuous,
first-order schemes, on the other hand, are known to mitigate the Gibbs phenomenon [23] that higher-order
methods may suffer.

To evaluate pf, zq “ G1pvq, we compute zpΦpx, tq, tq and fpΦpx, tq, tq using first-order numerical
integration based on (54) and (55). We obtain zpx, tq and fpx, tq from zpΦpx, tq, tq and fpΦpx, tq, tq
through first-order numerical interpolation in the x variable alone. This step can be implemented in a
parallel fashion.

To evaluate pv, zq “ G2pfq, we have a fourth-order PDE for vp¨, tq for every fixed t, with v “ 0 and
vxx “ 0 (if ε ‰ 0) on the boundaries t0, 1u.

Consider a uniform mesh over the spatial domain r0, 1s and the time domain r0, 1s. The spatial spacing
∆x “ 1{Nx and the time-domain spacing ∆t “ 1{Nt. Let vj P RNx`1 be a vector approximating
rvp0, j∆tq, . . . , vpi∆x, j∆tq, . . . , vp1, j∆tqsJ. The PDE (57) then becomes the following linear system
under the finite-difference discretization,

pA` diagpwj dwjqqvj “ ´τj dwj ,
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where d denotes the Hadamard product, diagpxq denotes a diagonal matrix with elements of vector x
being its diagonal entries, A P RpNx`1qˆpNx`1q is given by
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

´ 4ε
∆x4

´ λ
∆x2

κ` 2λ
∆x2

` 5ε
∆x4

´ 4ε
∆x4

´ λ
∆x2

ε
∆x4

ε
∆x4

´ 4ε
∆x4

´ λ
∆x2

κ` 2λ
∆x2

` 6ε
∆x4

´ 4ε
∆x4

´ λ
∆x2

ε
∆x4

. . . . . . . . . . . . . . .
ε

∆x4
´ 4ε

∆x4
´ λ

∆x2
κ` 2λ

∆x2
` 6ε

∆x4
´ 4ε

∆x4
´ λ

∆x2
ε

∆x4

ε
∆x4

´ 4ε
∆x4

´ λ
∆x2

κ` 2λ
∆x2

` 5ε
∆x4

´ 4ε
∆x4

´ λ
∆x2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and wj , τj P RNx`1, approximating fxp¨, tjq and ftp¨, tjq, respectively, are given by

wj “
1

∆x

“

0 pfpx3, tjq ´ fpx2, tjqq . . . pfpxNx`1, tjq ´ fpxNx , tjqq 0
‰J
,

τj “
1

∆t

“

0 pfpx2, tj`1q ´ fpx2, tjqq . . . pfpxNx , tj`1q ´ fpxNx , tjqq 0
‰J
,

with fpxi, tjq “ fpi∆x, j∆tq. We remark that the first and last elements of the right-hand side are set to
be zero while the first and last rows of the left-hand side are also modified. These two linear equations
are to enforce v “ 0 on the boundary; see (57). The fact that vxx “ 0 on the boundary implies that the
ghost points vp´∆x, ¨q “ ´vp∆x, ¨q, and vp1 `∆x, ¨q “ ´vp1 ´∆x, ¨q, which is used in the second
and the Nx-th rows of A. The remaining Nx ´ 3 equations in the linear system are to enforce the linear
PDE (57). Note that with a given f , we can solve for tvju in parallel for all time ttju, or construct a large
sparse linear system with respect to v “ rvJ1 . . .v

J
Nt`1s

J in one single sparse linear solve. When f0, f1

are smooth, it is preferable to use the central difference method to obtain τj .
Now we have two steps: G1 : v ÞÑ pf, zq through first-order numerical integration and interpolation,

and G2 : f ÞÑ pv, zq through a linear PDE solver. On the continuous level, we have a monotonic
energy decay based on (60). Algorithm 1 combines these two steps to iteratively find approximate local
minimizers of (50).

While this algorithm works well for many signals, on the discrete level, due to numerical errors from
interpolation, integration, and the PDE solver, (60) may not hold for every iteration of the fixed-point
update. To ensure that the discretized variational problem still has a monotonically decaying action
functional, we can introduce damping parameter α1 and α2, similar to the step size in a gradient descent
algorithm; see Algorithm 2 for details. We remark that most of the time, α1 “ α2 “ 1 is sufficient to
ensure decay of the action value, which is the case on the continuous level. Only when it is close to
the target solution, and the numerical errors dominate, one may observe that the action value no longer
monotonically decreases when iterating between the two sub-problems. There damping helps obtain more
accurate minima. We use back-tracking line search with a shrinking factor 1{2 to find a proper damping
coefficient; see details in Algorithm 3.

4.3. Finding a good initialization. We remark that the fixed points of G solve the Euler–Lagrange
equations (37)-(41), but they may not minimize (50) over (51) due to the possible local minima. In other
words, the fixed-point operator G has multiple fixed points. One can start with different initial guesses and
investigate the convergence behavior while choosing the solution with the smallest objective function.

We propose two different types of initial guesses.
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(1) Zero-velocity initialization. We set vp0qpx, tq ” 0, and compute pf p0q, zp0qq “ G2pv
p0qq. Note

that in this case, we have f p0qpx, tq “ p1´ tqf0pxq ` tf1pxq and zp0qpx, tq “ f1pxq ´ f0pxq.
(2) Prominence-matching initialization. We expect that if there exists a path with action that is

substantially smaller than linear interpolation, that path will match nearby large peaks. We observe
that matching the tallest peaks is not stable under perturbations as there may be spurious nearby
peaks, for example, due to oscillations as in Figure 3. For this reason, we use a more stable notion
of how large the peaks are. Namely, we use the notion of prominence coming from topography,
which describes how large the peaks are compared to their surroundings. The prominence of
a signal is defined as the least drop in height necessary to get to another local maximum with
a higher value. Consider a positive integer k. For the given f0 and f1, we each select k local
maxima with the largest k prominence. The location of the local maxima are denoted by txiu and
tyiu, 1 ď i ď k, respectively. We then construct a map T pxq such that T pxiq “ yi for each i, and
T p0q “ 0, T p1q “ 1. We use linear interpolation to define its function value for x P p0, 1qztxiu.
We then set the initial velocity to be vp0qpx, tq “ T pxq ´ x, which is constant in time, and use
pf p0q, zp0qq “ G1pv

p0qq as the initial guess for f and z. Also, if the minima in f0 and f1 are more
significant than the maxima, one can also initialize by matching the prominence of ´f0 and ´f1.

The zero-velocity initialization is equivalent to a degenerate case of the prominence-matching initialization
where k “ 0. In this scenario, we have T pxq “ x through linear interpolation between T p0q “ 0 and
T p1q “ 1. Later, we will refer to the “zero-velocity initialization” as k “ 0. We also comment that the
initialization is different for various integer k, which may lead to different convergence behavior and local
minima of the action functional (50). We suggest trying for a few k values. While there are many variants
on how one can incorporate the prominence-matching initialization into the optimization scheme, we
outline an Algorithm 4 as an example, which we use to produce the numerical results in Section 5. To be
more efficient, one can use fewer iterations when searching for an initialization compared to running the
entire Algorithm 1 or Algorithm 2 to find the minimizer of the optimization problem.

5. NUMERICAL EXPERIMENTS

In this section, we present a few examples illustrating the geodesic using the HV geometry1. Throughout
this section, we plot the source signal f0 in blue and the target signal f1 in red, while their barycenter
under the HV geometry is shown using the color purple. We use dashed lines to indicate the signals at
t “ 1

4 and t “ 3
4 .

Example 5.1. Nonuniqueness of minimizing geodesics. We consider an example where the source and
target signals have two bumps. We use 300 spatial and 290 time intervals to discretize the space-time
domain. For all plots in Figure 2, we set the hyperparameters κ “ 0.02, λ “ 0.001, and ε “ 0.002. In
Figure 2a, each signal has a large bump and a small bump. The large bumps are much bigger. The geodesic
is dominated by horizontal transport. In Figure 2b, the two bumps in each signal are of comparable size
while their locations remain the same. The geodesics, in this case, is dominated by vertical changes
instead of horizontal transport in the previous example. Finally, by adjusting the ratio of the bump heights
while fixing their locations, we find a scenario where horizontal transport and vertical changes result in
the same action value; see Figure 2c. That is, we found local minimizers, which we believe to be global,
where the paths have the same action. Thus, we believe the geodesics are not unique, indicating that the
signal space is, at least partly, positively curved.

1The codes based on the numerical scheme described in Section 4 that reproduce these examples can be found at https:
//github.com/yunany/Compute-HV-distance-between-signals.git.

https://github.com/yunany/Compute-HV-distance-between-signals.git
https://github.com/yunany/Compute-HV-distance-between-signals.git
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(A) Large bumps are much bigger than small
ones; Horizontal transport dominates.

(B) Bumps are of comparable sizes; Vertical
change dominates.

(C) For appropriate ratio of bump heights, both dominant transport mechanisms produce the same action.

FIGURE 2. Example of the nonuniqueness of the length-minimizing geodesic. We set
κ “ 0.02, λ “ 0.001, and ε “ 0.002. We use 300 spatial and 290 time intervals.

Example 5.2. Bumps with high frequency perturbations. Here we use the prominence-matching ini-
tialization introduced in the previous section to find a good starting point for our iterative scheme to
converge to the global minimizer of the action function (50). In Figure 3a, we show the geodesics for
hyperparameters κ “ 10´3, λ “ 5ˆ 10´5, and ε “ 2.5ˆ 10´5. We used 300 space intervals and 290
time intervals. In Figure 3b, we show the flow map based on the prominence-matching initial velocity,
which maps the source signal’s two most prominent peaks to the target signal’s two most prominent peaks.
The trajectories matching the peaks are indicated in red, while the remaining trajectories are obtained
by linear interpolation. The flow map with respect to the final converged velocity is shown in Figure 3c,
which is relatively close to Figure 3b.

Example 5.3. Signal with discontinuities. In Figure 4, we consider a non-smooth source signal and a
smooth target signal. Here, we use the hyperparameters κ “ 0.02, λ “ 0.001, and ε “ 0.002. We used
300 space intervals and 290 time intervals. The finite difference discretization on a static mesh implicitly
regularizes the signal f0. Since we use a first-order numerical scheme, the computed solutions do not
suffer from the Gibbs phenomenon as reflected by the geodesic in Figure 4. Moreover, we also observe
the gradual transition between the discontinuous feature and the discontinuous feature both in horizontal
and vertical directions.

Example 5.4. Growth and expansion. In Figure 5, we consider a “growth” example where the target signal
is much bigger in width and height than the source signal. Here, we use the hyperparameters κ “ 0.2,
λ “ 0.01, and ε “ 0.02. We used 300 space intervals and 290 time intervals. We comment that this
example is somewhat sensitive to the choice of hyperparameters, which directly affects the location of the
barycenter between f0 and f1 under the HV geometry.
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(A) geodesics based on the HV geometry

(B) flow map for the initial velocity (red trajectories denote the initial match-
ing of the most prominent two peaks between f0 and f1)

(C) flow map for the optimal velocity

FIGURE 3. We use prominence-matching initialization to find the action-minimizing
path. We show in (A) the initial signal (blue), final signal (red), and signals at t “ 0.25,
t “ 0.5, and t “ 0.75 along the computed geodesic for hyperparameters κ “ 10´3,
λ “ 5ˆ 10´5, and ε “ 2.5ˆ 10´5. We used 300 space intervals and 290 time intervals.
The flow for the initial velocity is shown in (B), and the flow for the optimal velocity is
shown in (C).

Example 5.5. In Figure 6, we compare two signed signals with a single bump where the bumps’ widths
and locations do not agree. We compute geodesic between them under the HV geometry for the chosen
hyperparameters decided by the parameter estimate (61) discussed in Section 5.1. Roughly estimate that
L “ 0.3, W “ 0.4 and H “ 0.4, which yields κ “ 0.1, λ “ 0.01 and ε “ 0.005. We note that a wide set
of parameters would have produced similar geodesics. The path is discretized using 300 spatial and 290
time intervals. The flow map corresponding to the optimal velocity v is plotted at the bottom of Figure 6,
where one can observe the transport feature mapping the peak of the source signal (blue) to the peak of
the target signal (red).
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FIGURE 4. Algorithm allows for non-smooth data. Here, we use the hyperparameters
κ “ 0.02, λ “ 0.001, ε “ 0.002, 300 space intervals, and 290 time intervals.

FIGURE 5. The dHV geodesic balances horizontal expansion and vertical growth. We
use κ “ 0.2, λ “ 0.01, ε “ 0.02, 300 space intervals, and 290 time intervals.

FIGURE 6. We show the initial signals along the computed geodesic for hyperparameters
given by formula (61) with L “ 0.3, W “ 0.4 and H “ 0.4. The bottom image shows
the flow of the optimal velocity v.



HV GEOMETRY FOR SIGNAL COMPARISON 31

(A) original signals (B) normalized signals f̂0 and f̂1 for OT

(C) the optimizer fpx, tq based on the HV geometry

(D) OT displacement interpolation between f̂0 and f̂1

FIGURE 7. We compare the matching of two 1D seismic signals by the flow map
induced by the HV geometry and optimal transportation with a quadratic cost (applied to
normalized signals). (A): the original signal used in the HV geometry; (B): the normalized
signal to satisfy the OT requirements; (C) optimizer fpx, tq from the HV geometry; (D)
the displacement interpolation between f̂0 and f̂1 based on the optimal transport map.

Example 5.6. (Seismic signals) Using optimal transportation (OT) for seismic applications has faced
difficulties from the constraints that the signals should be nonnegative with equal total mass [16, 17].
In this example, we test the proposed HV geometry for comparing synthetic seismic signals shown in
Figure 7a. To compare them using OT, we may normalize the signals first so that they are nonnegative
with equal total mass; see Figure 7b for the normalized signals f̂0, f̂1, squared and then scaled to integrate
to one [16]. Figures 7c and 7d show the HV and OT geometry velocity flow maps, respectively. We
use a quadratic cost function for OT. For the HV geometry, we set H “ 2, L “ 0.1 and W “ 0.02 for
parameters in (61) presented in Section 5.1. Note that in the classic OT, all mass has to be transported
through the monotonic map T such that

şx
0 f̂0pyqdy “

şT pxq
0 f̂1pyqdy. This may lead to mass being

transported far away and unevenly, as illustrated in Figure 7d. The proposed HV geometry not only
can handle signed signals naturally, avoiding the artifacts by preprocessing the signal but also enforces
regularity to the velocity.

Example 5.7. Finally, we consider a real-world example. We compare two heartbeats from the ECG
database PhysioNet 2017 Challenge [14, 21]; see Figure 8. The geodesic is computed in the space of
signals according to the HV geometry for hyperparameters given by (61) below in Section 5.1, with
L “W “ 0.1 and H “ 300, which one estimates from the given data. We use 600 space intervals and
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FIGURE 8. Shown is the geodesic between two ECG signals under the HV geometry.
We note that the horizontal transform dominates for some features, while some parts
are matched by vertically moving the graph. We set κ, λ, and ε based on (61) with
L “W “ 0.1 and H “ 300. We use 600 space intervals and 150 time intervals.

150 time intervals. We note that large features (R-peaks and T-waves) are matched in a desirable way via
horizontal transport, while perturbations of small amplitude are matched via a vertical adjustment. This
illustrates the benefits of the HV geometry.

5.1. Parameter selection. An important element in using HV geometry to analyze signals is how to
select the parameters κ, λ, and ε. This depends on the length scales present in the data. Here we give a
simple rule for selecting the parameters based on the scaling properties of the distance; see Proposition
2.1. Let H be the average vertical variation in the data, W be the typical width of features in the data, and
L be the maximum horizontal distance between the features to be matched. Then we suggest using

(61) κ “ 0.01
H2

L2
, λ “ 0.02H2, and ε “ 0.2H2W 2.

As we mentioned, the scaling of the parameters respects the invariances of the distance. The real number
coefficients (0.01, 0.02, 0.2) are based on numerical experiments with different signal types.

We note that given a data set F “ tf1, . . . , fnu a good suggestion for H would be the typical L2

distance between the signals:

H2 “
1

n2

ÿ

i

ÿ

j

}fi ´ fj}
2
L2 .

We also note that H2 is twice the variance and can thus be computed as a sum over one index:

H2 “
2

n

ÿ

i

}fi}
2
L2 ´ 2

›

›

›

›

›

1
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fi
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›

2

L2

.

We remark that, for most signals, the outcome is not very sensitive to the parameters.
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